Linux Kernel Crypto API User Space Interface
Library

Stephan Mueller

smueller@chronox.de

Linux Kernel Crypto API User Space Interface Library
by Stephan Mueller

1.3.1 Edition
Copyright © 2014 Stephan Mueller

This documentation is free software; you can redistribute it and /or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

1. libkcapi - Linux Kernel Crypto API User Space Interface Library 1
Version NUumber SChEMIA.......cooouviiieiiiiieceeeeeeee ettt 1
Purpose Of AF_ALG.....ccocieeerreers et eseseeaes 1

2. Programming Guidelines 3
CoNvenience FUNCHONSoc.viiieiiiceieeeee ettt eaaeas 3
Synchronous Symmetric Cipher APIcccocooiiiniiiiiiiiiics 3
Asynchronous Symmetric Cipher APL.........cccooviviiiiiiiiiiiiicccnne 3
AEAD Cipher APL.......cccoiiiiiiiiiicii e 4

Aynchronous AEAD Cipher AP ..., 4
AEAD Memory Structure..........cccevvvviiieiiiiniiieiciccccecces 4
Message Digest APL ... 6
Asymmetric Cipher APL.........ccccoooiiiiiiiiiiis 6
ZETO COPY vvviniiiiitiiiitsie it 6
Memory ALLOCAtIONc.cviieiiiic 6
Asynchronous I/O Use Cases and Libkcapi........ccoocecevcccccecnnnnnneenes 6
Multiple Staged Cipher Operations...........ccccoevveieieiniicieieiiceeiccene, 7
Multiple Separate Cipher Operations...........cccooorueiniiircieiiicieccie, 7
KerNel INEITACESc..oooeeeeeiieeeeeeeeee ettt ettt ettt eneeeanas 8
Kernel Configurationcccccueiviiiiiininniniiiiiccccccccecees 8
Example Code........oiiii 9

3. Programming Interface 11

COMIMON AP oottt e e e e ate e e e s eeaaaeee s 11
kcapi_set_verbosity ... 11
Kcapi_VerSiONStringcccococeucuriririiiiiriririiecccceeee e 11
KCaPI_VETSION ... 12
Keapi_pad_iV ... 13
kcapi_memset_SECUTEccccccuiururiiiiiririri s 13
kcapi_handle_reinit.........ccccoeiiiiiiiiiiii 14
kcapi_set_maxspliCesize ... 15
kcapi_get_maxsplicesize........ccccvuruviiiiiririnininiriiccicc e 16

Symmetric Cipher API - GENericccccovvviviiiiiniiininiiiciccccceeenes 16
kcapi_cipher_init ... 17
kcapi_cipher_destroy ... 17
kcapi_cipher_setkey ... 18
kcapi_cipher_iVSizZe ... 19
kcapi_cipher_blOCKSIZeccccceururiiiiiriririiiicccccccccceeeeeaes 19

Synchronous Symmetric Cipher API - One Shot...........cccoooiiiiiiiiiicnnne, 20
kcapi_cipher_encrypt.....iiiie s 20
kcapi_cipher_decrypt.......ccococcciriiiinnriicccrccceecee s 21

Symmetric Cipher API - CONVeNIence ..o 22
kcapi_cipher_enc_aes_cbhC.........ccociiiiiiniiiicinininiiiicce 22
kcapi_cipher_dec_aes_cbC........ccccoouvuiiiirininininiiciiicccccceee s 23
kcapi_cipher_enc_aes_ctr ... 24
kcapi_cipher_dec_aes_ctr ..o 25

Asynchronous Symmetric Cipher API- One Shot..........cccccccciiiiininnne. 26
kcapi_cipher_encrypt_aiocccccovvviviiiininininiiicicc 27
kcapi_cipher_decrypt_aioccecevviiiinininiiiniic 28

Synchronous Symmetric Cipher API - Stream.........cccccooieiicicceniniccnenenes 28
kcapi_cipher_stream_init_eNnccccoceuvviviiiiiiiiicc 29
kcapi_cipher_stream_init_decccccovriiinininiiiiiinii 30
kcapi_cipher_stream_update..........cccovuvivivininiiiiiiiccccceecene 30
kcapi_cipher_stream_update_last..........ccccovviiiiiiiiiiiiiiin 32
kcapi_cipher_stream_op ... 33

AEAD Cipher API - GeNeriC.......cccovuvimuiriiieieiiceeiceecee e 34
kcapi_aead_init.......cooiiiiiiiiiiiii 34
kcapi_aead_destroy ... 34
kcapi_aead_setkey ... 35
kcapi_aead_setassoclen ... 36
kcapi_aead_settaglenccccovviiiiiiniiiiini 36
kcapi_aead_iVSIZe ... 37
kcapi_aead_blOCKSize..........cccccvuviviiiiiiiiiiiiiiiic 37

v

kcapi_aead_authSiZe ..o 38

kcapi_aead_inbuflen_encccccooviiiniiinininiiiii 39
kcapi_aead_inbuflen_decccccccooviiiniin 39
kcapi_aead_outbuflen_enc..........cccooevvevniriniicciiicccccceeeeeenes 40
kcapi_aead_outbuflen_dec..........cccccvviiiiniiiiiiiii 41
kcapi_aead_ccm_nonce_to_iv........iiiiiii 42
kcapi_aead_getdata_inputccccocouvvvirirnnininiiicicccceceeee 42
kcapi_aead_getdata_output........ccccovvivivininiiiniiiiiii 44
Synchronous AEAD Cipher API- One Shot..........c.cooeiiiiiiiiiiiicee, 45
kcapi_aead_encrypt......ccccocciirniirrrcccceeee s 45
kcapi_aead_decrypt.......cccooiiiiiiviiiiiiniiii 46
Aynchronous AEAD Cipher API-One Shot ..o, 47
kcapi_aead_encrypt_aioccccceeeeeeierrininininiccccecee s 47
kcapi_aead_decrypt_aiocccccevviviiiiiniiiniiiii 48
Synchronous AEAD Cipher API - Stream ..o, 50
kcapi_aead_stream_init_€NC.......cccocovrirrninininiciiiccccece e 50
kcapi_aead_stream_init_dec........cccccovviiiiiiiininiiiii 51
kcapi_aead_stream_update.........ccccoovviviiiiiiiiniiiii 52
kcapi_aead_stream_update_last.........cccooeeriviniiiiiiiiiiiciee 53
kcapi_aead_stream_Op........cccceuvviiiiiiniiniiini 54
Message Digest Cipher API - Generic........ccoovirieiiiciciiiicieeccceeie, 55
keapi_md_ it ... 55
kcapi_md_destroy ... 55
kcapi_md_setkey ... 56
kcapi_md_digestsize.........cccoeiuiuiiviiiiiiiiiccc e 57
Message Digest Cipher API - One Shotcccooiiiiiiiiiicce, 57
kcapi_md_digest.......ccooiiiiiiiiiiiiii 57
Message Digest Cipher API - CONVENIence............cocceeueuiccmcueuemcmeneneieneneeenes 58
kecapi_md_shal.......ccccoiiiiiinii 58
kecapi_md_sha224...........cccccoiiiiiniiiiiiici 59
kcapi_md_sha256...........cccccoeeuiiiiiiiiiiiccccce s 60
kcapi_md_sha384...........ccccoviiiiiiiiiii 61
kecapi_md_shabI12........ccccoiiiininiiiiii 61
kcapi_md_hmac_shal.......c.ccccocoeiiiiniiiiiiiccccceeeeeees 62
kcapi_md_hmac_sha224...........ccccovviinninniiiiic 63
kcapi_md_hmac_sha256..........cccccceiviinniiinniiiiiicc 64
kcapi_md_hmac_sha384............ccccoeirininniiiiiccccceececees 65
kcapi_md_hmac_sha512........c.cccccceviiiiiniiiiiccc 66
Message Digest Cipher API - Streamcccocovvvviviviiiiiciccccece 67
kecapi_md_update ..o 67
kecapi_md_final.......ccoooiiiiiiii 67
Random NUMDET APL.......couvioieeeeeeeeeeee et eenes 68
keapi_rng Init ... 68
kcapi_rng_destroy ... 69
kecapi_tng_seed ... 69
kcapi_rng_generate ... 70
kcapi_rng_seedsize..........cccooiiiniviiiiiiininiii 71
Random Number API - CONVENIENCEc.vvvveeveeeenreeeeeeeeeeeeeieeeeeeeeeeeeeeaeeeenns 71
kcapi_rng_get bytes........ccccciiiiiiiiiiiiiiiiiccc s 71
Asymmetric Cipher API - GENeTiC........cccooieieiiiicieiiicieiecce e 72
kcapi_akcipher_init ... 72
kcapi_akcipher_destroy ... 73
kcapi_akcipher_setkey ..., 73
kcapi_akcipher_setpubkey ..o 74
Synchronous asymmetric Cipher API - One Shotcccccoeiiiiniininnne. 75
kcapi_akcipher_encrypt.......ccooiiii 75
kcapi_akcipher_decrypt ... 76
kcapi_akcipher_sign.........ccccciiiiiinininiicccccce 77
kcapi_akcipher_verify ... 78
Aynchronous asymmetric Cipher API - One Shot ..., 79
kcapi_akcipher_encrypt_aioccocovvviviiinininiiiiicccccccccce 79
kcapi_akcipher_decrypt_aio ..o 80
kcapi_akcipher_sign_aio ... 81
kcapi_akcipher_verify_aio ..o 82

Asymmetric Cipher API - Streamc.ccocovveveveeinininicccccceeeeeeeeeeeeenes 83

kcapi_akcipher_stream_init enc.........cccoovviviiiiiciiiiiiiccn 83
kcapi_akcipher_stream_init_dec.........ccooviviiiiiiiiii 84
kcapi_akcipher_stream_init_sgn........cccoociiviiniiiiinniniiinicn 85
kcapi_akcipher_stream_init vfyccccccovviiiiiiiiii 86
kcapi_akcipher_stream_update..........cccccovvviviiiiiinii 87
kcapi_akcipher_stream_op........ccccceiviiniiiiiiniiiiiinic 88
Key Protocol Primitives API - Generic..........cccovvviriniiuiiiiiiiiiiiceiciecnes 88
keapi_Kpp_init.......coooiiii 89
kcapi_ Kpp_deStroyccccccuciciiiinirrcccccecee s 89
kcapi_kpp_dh_setparam_pKcs3ccccoeueiiiiiiiiciii, 90
kcapi_kpp_ecdh_setcurve ..o 91
kcapi_KPP_SetKeYcccciiiiiiiiiiiiiiiirr s 91
Synchronous Key Protocol Primitives API - One Shot...........cccccceevinininnne. 92
kcapi_kpp_keygen ... 92
KCapi_KPP_SSZEM....ouiuimiiiiiiiiiiiiciiciccccrr s 93
Asynchronous Key Protocol Primitives API - One Shotccccccevivinne 94
kcapi_Kpp_Keygen_aio ... 94
kcapi_Kpp_sSZen_aioccccccucuiueiririiiiiririiieccccccceee s 95
Key Derivation FUNCHONSc.ccoiiiiiiiiiiiiiccce, 96
keapi_kdf dpi....ccoiiiiiiiiiiii 96
keapi KA fD ..o 97
keapi Kdf Ctr..ooiiiiii 98
keapi_pbKdf......cooiii 99
kcapi_pbkdf_iteration_count............cccocevevririniiiiiicccccceeeeeees 100
keapi hKdf ... 100

vl

Chapter 1. libkcapi - Linux Kernel Crypto APl User Space
Interface Library

This documentation applies to version 1.3.1.

The Linux kernel exports a network interface of type AF_ALG to allow user space
to utilize the kernel crypto APL

libkcapi uses this network interface and exports easy to use APIs so that a devel-
oper does not need to consider the low-level network interface handling.

The library does not implement any cipher algorithms. All consumer requests are
sent to the kernel for processing. Results from the kernel crypto API are returned
to the consumer via the library APL

The kernel interface and therefore this library can be used by unprivileged pro-
cesses.

Version Number Schema

The version numbers for this library have the following schema:
MAJOR.MINOR.PATCHLEVEL

Changes in the major number implies API and ABI incompatible changes, or
functional changes that require consumer to be updated (as long as this num-
ber is zero, the API is not considered stable and can change without a bump of
the major version).

Changes in the minor version are API compatible, but the ABI may change. Func-
tional enhancements only are added. Thus, a consumer can be left unchanged if
enhancements are not considered. The consumer only needs to be recompiled.

Patchlevel changes are APl / ABI compatible. No functional changes, no en-
hancements are made. This release is a bug fixe release only. The consumer can
be left unchanged and does not need to be recompiled.

Purpose Of AF_ALG

With the presence of numerous user space cryptographic libraries, one may ask
why is there a need for the kernel to expose its kernel crypto API to user space.
As there are system calls and potentially memory copies needed before a cipher
can be invoked, it should be typically slower than user space shared libraries.

There are several reasons for AF_ALG:

« The first and most important item is the access to hardware accelerators and
hardware devices whose technical interface can only be accessed from the ker-
nel mode / supervisor state of the processor. Such support cannot be used from
user space except through AF_ALG.

» When using user space libraries, all key material and other cryptographic sen-
sitive parameters remains in the calling application’s memory even when the
application supplied the information to the library. When using AF_ALG, the
key material and other sensitive parameters are handed to the kernel. The call-
ing application now can reliably erase that information from its memory and
just use the cipher handle to perform the cryptographic operations. If the ap-
plication is cracked an attacker cannot obtain the key material.

* On memory constrained systems like embedded systems, the additional
memory footprint of a user space cryptographic library may be too much. As
the kernel requires the kernel crypto API to be present, reusing existing code
should reduce the memory footprint.

Chapter 1. libkcapi - Linux Kernel Crypto API User Space Interface Library

Chapter 2. Programming Guidelines

A consumer has to use the kcapi.h header file to link with libkcapi. The linking
has to be performed using -lkcapi.

In case a consumer does not want a shared library, the libkcapi C file and header
file can also just copied to the consumer code and compiled along with it.

A general requirement must be observed: setting of keys must be performed be-
fore any operation. Re-setting of keys is only permissible once all data in flight
(sent to the kernel but the kernel’s result is not yet obtained) is processed, i.e. no
data is in flight any more.

Convenience Functions

To support various use cases, the API provided with libkcapi is extensive.
Though, some developers want to simply use a given cipher without any
specific details. To accommodate such users, libkcapi provides convenience
functions or convenience wrappers.

The convenience functions provide exactly one function call to perform one com-
plete cipher operation, such as an AES CBC encryption operation or a SHA-256
hashing. The caller only needs to provide the input and output buffers of his data.
The entire intrinsic operation of libkcapi is hidden from the user.

Convenience functions are provided for the different cipher types. They are
clearly marked in the API specification below.

Synchronous Symmetric Cipher API

Symmetric ciphers can be used in the following different ways:

¢ One-shot API: The one-shot API performs an encryption operation with one
API call. With that API call, the caller provides the input data and immediately
receives the output from the cipher operation.

¢ Stream API: With the stream API, the caller can implement independent calls
to send data to the kernel and receive data from the kernel. Multiple send calls
can be inter-mixed with multiple receive calls. If the kernel buffer is full, the
caller of a subsequent send call will be put to sleep. Conversely, if the buffer is
empty, a caller trying to read data resulting from a cipher operation will be put
to sleep. Sleeping callers will be woken up by the kernel once buffer space be-
comes available or data becomes available, respectively. The detached nature of
the sending/receiving operation allows the implementation of multi-threaded
applications where one or more threads send data and one or more threads
receive data. The threads must operate on the same cipher handle. However,
access to that cipher handle does not need to be serialized when the stream API
calls are invoked as the API calls only read the cipher handle.

Asynchronous Symmetric Cipher API

In addition to the symmetric cipher API, an asynchronous API is offered with the
kcapi_cipher_*_aio and kcapi_aead_*_aio API calls. The concept of that API is to
perform parallel operations of multiple encryption or decryption data streams.

To use the AIO API, the caller must use the KCAPI_INIT AIO with the
kcapi_cipher_init function call to set up all additional logistics for handing
AIO. That means, users which are not interested in AIO will not suffer from
the additional memory overhead including the time required to allocate that
memory required for AIO.

Chapter 2. Programming Guidelines

This implies that the asynchronous API handles the scatter-gather lists referenced
by the IOVECs differently compared to the synchronous APIs. Whereas the syn-
chronous API references different parts of plaintext or ciphertext that are pro-
cessed with one cipher operation, the IOVECs of the asynchronous API refer-
ences plaintext or ciphertext where each IOVEC is processed with an indepen-
dent cipher operation. I.e. when using AES-CBC with the synchronous API and
the scatter-gather lists, all input data is sent to one invocation of the AES-CBC
cipher. Conversely, the asynchronous API invokes one individual AES-CBC op-
eration for each individual IOVEC.

The asynchronous API is designed to perform an in-place operation where the
buffers for the input data are used to store the output data.

The asynchronous API in libkcapi as well as the kernel has a higher overhead
for setting the cipher operation up. That means that if the caller only uses a one
IOVEC with one associated cipher operation, the asynchronous API is expected
to be slower compared to the synchronous APIL But already with two or three
combined cipher operations, the AIO API should be faster than the synchronous
APIL You may test the difference in performance with the test/kcapi test appli-
cation by using the options -f for measuring the time of cipher operations in
nanoseconds, -d for the number of parallel invocations and -x 1 for a symmet-
ric one-shot cipher invocation and -x 9 for an asymmetric cipher operation with
the given input data.

The kernel offers the AIO interface since kernel version 4.1 (symmetric ciphers)
and 4.7 (AEAD ciphers). The libkcapi implements a transparent fallback to use
the synchronous cipher API in case the AIO support is not present for the cur-
rent kernel. This allows the calling users to be agnostic of the kernel support.
Nonetheless, libkcapi with report the lack of AIO support if AIO is requested as
the fallback implementation has a slight performance overhead.

AEAD Cipher API

AEAD ciphers implement a very similar API approach as the symmetric ciphers:

¢ One-shot API: The one-shot API performs an encryption operation with one
API call. With that API call, the caller provides the input data and immediately
receives the output from the cipher operation.

o Stream API: With the stream API, the caller can implement independent calls
to send data to the kernel and receive data from the kernel. However, unlike
the symmetric cipher API, one AEAD cipher operation must be considered as
one unit as the integrity value is calculated for one encryption or decryption
operation. The caller can use multiple calls to provide the input data. The last
chunk of data must be sent to the kernel with the API call marking the last
submission. Then, the cipher operation can be triggered with the recvmsg in-
vocation. It is possible to implement a multi-threaded application as the thread
triggering the cipher operation is put to sleep until the last block is received.
Once the last block is received, the caller waiting on the cipher operation is
woken up to obtain the data.

Aynchronous AEAD Cipher API

Similarly to the symmetric cipher API, the AEAD API supports asynchronous
operation as well. The same concept regarding the IOVECs applies as discussed
for the asynchronous symmetric cipher API above.

Chapter 2. Programming Guidelines

AEAD Memory Structure

When using the stream API for AEAD, the caller must observe a particular order
of data components. It is permissible that for each of the following data compo-
nents multiple send calls are used. But in total, all send calls must send the AEAD
data in the requested sequence. That sequence has changed with kernel 4.9. The
following sequence is applicable to kernel versions up to and including 4.8:

1. Associated Authentication Data: The AAD must be provided as a first
chunk.

2. Plaintext / Ciphertext: Following the AAD, the entire plaintext or
ciphertext is provided that shall be encrypted and integrity protected or
decrypted and whose integrity shall be verified.

3. Authentication Tag: Regardless of an encryption or decryption, the authen-
tication tag memory must be provided.

The caller must provide memory that is identical in size for the input and out-
put data, even parts of the memory is unused. For example, for encryption, the
AEAD cipher operation only needs the AAD and the plaintext. Nonetheless, the
interface requires that the memory is big enough to hold the tag as well. This
requirement particularly aids the in-place cipher operation.

Starting with kernel 4.9, the interface changed slightly such that the authentica-
tion tag memory is only needed in the output buffer for encryption and in the
input buffer for decryption.

To allow the calling application to be agnostic about the differences in the kernel
interface, the calling application is offered additional API calls which should be
used as follows:

1. Obtain the required input buffer length for the cryptographic operation
using the calls kcapi_aead_inbuflen_enc or kcapi_aead_inbuflen_dec.

2.Obtain the required output buffer length for the cryptographic
operation using the APIs of kcapi_aead_outbuflen_enc or
kcapi_aead_outbuflen_dec.

3. For an in-place operation with a linear buffer, do the following (for an ex-
ample, see test/kcapi-main.c:cavs_aead()):

a. allocate memory that is max(inbuflen, outbuflen),

b. call to kcapi_aead_getdata_input and kcapi_aead_getdata_output
with the allocated memory pointer to obtain the pointers into that
allocated memory where the AAD, plaintext / ciphertext and tag is
to be provided,

c. fill these AAD, plaintext/ciphertext and tag pointers with the re-
spective data if they are non-NULL -- note, a NULL pointer may be
returned for the tag pointer,

d. invoke the crypto operation with the pointer to the allocated buffer
and inbuflen is supplied to the.

4. For for separate, potentially non-contiguous buffers, do the following (for
an example, see test/kcapi-main.c:cavs_aead_stream()):

a. ensure that your total buffer size for input and output complies with
the result from the buffer lengths supplied by the aforementioned
API calls,

b. call to kcapi_aead_getdata_input and kcapi_aead_getdata_output
with NULL pointers for the memory buffers to obtain the lengths
for the AEAD data components,

c. initialize the IOVECs and/or invoke the stream API with the inde-
pendent buffers with the AAD, plaintext/ciphertext and tag if the
associated length values are non-zero.

Chapter 2. Programming Guidelines

If the caller chooses to not implement an in-place operation, the kernel will copy
the AAD data into the output buffer, so that the destination buffer will hold the
the ciphertext or plaintext, the AAD data and the authentication tag (encryption
only). The memory structure of the destination buffer is identical to the source
buffer. (This is currently not yet implemented for all ciphers and will be fixed in
future kernel versions.)

Message Digest API

Again, like for the symmetric ciphers, the message digest API implements the
one-shot and the stream use cases. In addition, convenience wrapper functions
for SHA-1 through SHA-512 are provided where the caller only provides its in-
put data and the return buffer for obtaining a message digest or keyed message
digest.

Asymmetric Cipher API

The asymmetric cipher API provides access to the raw asymmetric operations
(i.e. modular exponentiation).

Zero Copy

When using the one-shot API for symmetric ciphers, AEAD ciphers, as well as
message digests, the library uses the zero copy interface to provide the input
data to the kernel. That means, the kernel operates on the user space pages.

To ensure the efficiency of this zero copy approach, the caller should use a page-
aligned data buffer for the input data. Non-aligned buffers would work also, but
the kernel would need to perform more page accesses, lowering the throughput.
Such an aligned buffer can be created, for example, using the following call - the
value 4096 should be the size of one page on the system:

unsigned char buf[4096] __attribute__ ((__aligned__ (4096)));

unsigned char xbuf;
posix_memalign ((void =) &buf, PAGE_SIZE, buflen);

Memory Allocation

The library libkcapi uses the data structure struct kcapi_handle as the cipher han-
dle that allows the consumer to operate with the various function calls of this
library.

Unlike other crypto libraries, libkcapi does not allocate any memory or performs
operations that implies memory allocation. struct kcapi_handle only holds point-
ers to the consumer-provided buffers with sensitive data. That means that the
buffers holding sensitive data like keys are under full control of the consumer.
Therefore, this library does not offer any memory allocation or secure memory
clearing functions.

The consumer must ensure that the memory is appropriately sanitized. The caller
does not need to sanitize struct kcapi_handle as it does not contain any sensitive
data.

Chapter 2. Programming Guidelines

Asynchronous I/O Use Cases and Libkcapi

The kernel crypto API user space interface supports different use cases with
the asynchronous I/O operations which are illustrated in the following sections.
These sections also illustrate the API calls to be used to follow the respective use
cases.

All APIs that perform synchronous operation do not have different purposes and
thus do not require special precautions when using them.

The different use cases round asynchronous I/O revolve around different ways
how to send data to the kernel and to retrieve processed data.

Multiple Staged Cipher Operations

Using the kcapi_cipher_*_aio and kcapi_aead_*_aio API calls, a caller can supply
one or more IOVECs of data to the kernel. However, the caller can only supply
one IV to the kernel.

The API calls only allow specifying one integer defining the number of IOVECs
in the arrays of the input data as well as the output data. The libkcapi library
uses the input and output IOVECs as pairs. Le. the first IOVEC of the input array
relate to the first IOVEC of the output array, and so on.

The kernel invokes the cipher operation when a recvmsg system call is processed.
The AIO handling transforms each output IOVEC into one separate invocation
of the recvmsg handler that processes the data submitted with the corresponding
input IOVEC. This means, each output IOVEC will trigger one cipher operation.
When multiple IOVECs are processed by the kernel’s AIO handling, all resulting
recvmsg calls are invoked with the in the data same order specified by the list of
IOVECs.

WARNING: Currently, it is not guaranteed that the drivers perform the proper se-
rialization of the parallel processing of the different IOVECs. For example, when
providing two IOVECs, they may be both using the initially set IV. Thus, they
are not chained. User space is able to serialize the AIO operation in this case by
invoking the AIO API calls with input/output IOVEC arrays holding one entry
each only. However, this would imply that this type of invocation will not be
different from a synchronous invocation.

Multiple Separate Cipher Operations

The kernel and thus libkcapi supports the use case where several of the aforemen-
tioned multiple staged cipher operations are can be performed in parallel which
are totally isolated from each other. In this case, different IVs are used.

Using the kcapi_handle_reinit libkcapi API call, the caller can obtain a new cipher
handle from an existing handle. Both share the same key and cipher -- the ker-
nel crypto API maintains the same TFM data structure for both. However, both
cipher handles can now encrypt or decrypt data completely isolated from each
other. Specifically, the following data of a cipher operation is isolated between
the different cipher handles -- this is all data that is not set with a setsockopt(2)
system call:

« Input: plaintext (encryption) or ciphertext (decryption)

+ Output: plaintext (decryption) or ciphertext (encryption)

o IV

« AEAD: associated authenticated data (AAD) and its length
« AEAD: tag

The following data is shared between the different cipher handles -- this covers
all data that can be set with a setsockopt(2) system call:

* Key

Chapter 2. Programming Guidelines

+ AEAD: Tag length

This means that the "multiple staged cipher operations" discussed above can be
performed with each cipher handle independently.

The call kcapi_handle_reinit does not open another socket, but implies that only
a new accept(2) system call is performed.

Kernel Interfaces

Depending on the version of your kernel, some of the kernel interfaces the library
depends on are not available. When using the respective library API functions,
an error is returned during initialization of the cipher handle. The following in-
terfaces are available:

¢ kcapi_md_* usable since kernel version 3.0
« kcapi_cipher_* usable since kernel version 3.0
* kcapi_rng_* kernel interface integrated into kernel version 4.0

* kcapi_aead_* kernel interface added to cryptodev-2.6 tree and should be usable
with kernel version 4.2.

« kcapi_akcipher_* kernel interface is discussed for inclusion to the cryptodev-
2.6 kernel tree.

Kernel Configuration

To use libkcapi, the following kernel options need to be enabled:

¢ CONFIG_CRYPTO_USER enables the NETLINK_CRYPTO interface to allow
obtaining information about the loaded ciphers. When compiled as module
in older kernels (pre 3.18) the resulting crypto_user kernel module must be
loaded manually.

» CONFIG_CRYPTO_USER_API enables the core functionality of the user space
interface handler.

o CONFIG_CRYPTO_USER_API_HASH enables the "hash" interface (i.e. allows
the use of all message digest and keyed message digest ciphers).

+ CONFIG_CRYPTO_USER_API_SKCIPHER enables the "skcipher" interface to
use symmetric cipher algorithms.

» CONFIG_CRYPTO_USER_API_AEAD enables the "aead" interface to use
AEAD cipher algorithms. This support is currently discussed on LKML and
therefore not present in the mainline kernel.

» CONFIG_CRYPTO_USER_API_RNG enables the "rng" interface to use the ran-
dom number generators.

» CONFIG_CRYPTO_USER_API_AKCIPHER enables the "akcipher" interface to
use the asymmetric ciphers. This support is currently discussed on LKML and
therefore not present in the mainline kernel.

In addition, the following patch must be applied if a kernel
less than 3.19-rc1 or the cryptodev-2.6 kernel tree is wused:
https:/ / git.kernel.org/cgit/linux/kernel/ git/herbert/cryptodev-
2.6.git/commit/?id=5d4a5e770d97d87082067886e7097c920b338da5

In addition, the following patch must be applied if a kernel
less than 3.19-rc1 or the cryptodev-2.6 kernel tree 1is wused:
https:/ / git.kernel.org/cgit/linux/kernel / git/herbert/cryptodev-
2.6.git/commit/?id=af8e80731a94{f9de9508b01d9e5d931d538dc6b

In addition, the following patch must be applied if a kernel
less than 3.19-rc1 or the cryptodev-2.6 kernel tree is used:

Chapter 2. Programming Guidelines

https:/ / git.kernel.org/cgit/linux/kernel/ git/herbert/cryptodev-
2.6.git/commit/?id=25{b8638e919bc7431a73f2fb4a9713818ae2c9d

Example Code

Example code covering all available API calls is provided with the test code in
the test/ directory.

Chapter 2. Programming Guidelines

10

Chapter 3. Programming Interface

Common API

The following API calls are common to all cipher types.
kcapi_set_verbosity

LINUX
libkcapi ManualNovember 2022

Name

kcapi_set_verbosity — set the verbosity level of the library
Synopsis

void kcapi_set_verbosity (enum kcapi_verbosity level);

Arguments

level

[in] verbosity level:

LOG_ERR

only log error messages (default)

LOG_WARN

log warnings and error messages

LOG_VERBOSE

log verbose messages, warnings and error messages

LOG_DEBUG

log all details of library operation

kcapi_versionstring

LINUX

Chapter 3. Programming Interface

libkcapi ManualNovember 2022

Name

kcapi_versionstring — obtain version string of kcapi library
Synopsis

void kcapi_versionstring (char * buf, uint32_t buflen);

Arguments
buf
[out] buffer to place version string into

buflen
[in] length of buffer

kcapi_version

LINUX

libkcapi ManualNovember 2022

12

Name

kcapi_version — return machine-usable version number of kcapi library
Synopsis

uint32_t kcapi_version (void);

Arguments

void

no arguments

Description

The function returns a version number that is monotonic increasing for newer
versions. The version numbers are multiples of 100. For example, version 1.2.3 is
converted to 1020300 -- the last two digits are reserved for future use.

The result of this function can be used in comparing the version number in a
calling program if version-specific calls need to be make.

return Version number of kcapi library

Chapter 3. Programming Interface

kcapi_pad_iv

LINUX
libkcapi ManualNovember 2022

Name

kcapi_pad_iv —realign the IV as necessary for cipher
Synopsis

int kcapi_pad_iv (struct kcapi_handle * handle, const uint8_t x iv,
uint32_t ivlien, uint8_t ** newiv, uint32_t * newivlen);

Arguments

handle

[in] cipher handle
iv

[in] current IV buffer

ivlen

[in] length of IV buffer

newiv

[out] buffer of aligned IV

newivlen

[out] length of newly aligned IV

Description

The function pads the least significant bits of the provided IV up to the block size
of the cipher with zeros. In case the provided IV is longer than the block size, the
least significant bits are truncated to the block size.

The function allocates memory for newiv in case the return code indicates suc-
cess. The consumer must free the memory after use.

return 0 for success; a negative errno-style error code if an error occurred

kcapi_memset_secure

LINUX

13

Chapter 3. Programming Interface
libkcapi ManualNovember 2022

Name

kcapi_memset_secure —memset implementation that will not be optimized
away by the compiler

Synopsis

void kcapi_memset_secure (void % s, int ¢, size_t n);

Arguments

[in] see memset(3)

[in] see memset(3)
[in] see memset(3)
Description

The parameters, he logic and the return code is identical to memset(3).

kcapi_handle_reinit

LINUX
libkcapi ManualNovember 2022

Name

kcapi_handle_reinit — re-initialize a new kernel interface
Synopsis

int kcapi_handle_reinit (struct kcapi_handle xx% newhandle, struct
kcapi_handle x existing, uint32_t flags);

Arguments

newhandle

[out] cipher handle filled during the call

14

Chapter 3. Programming Interface

existing

[in] existing cipher handle from which a new handle shall be re-initialized

flags
[in] flags specifying the type of cipher handle

Description

The kernel crypto API interface operates with two types of file descriptors, the
TEM file descriptor and the OP file descriptor.

The TFM file descriptor receives the cipher-operation static information: the key,
and the AEAD tag size.

The OP file descriptor receives the volatile data, such as the plaintext / ciphertext,
the IV, or the AEAD AD size.

The kernel crypto API AF_ALG interface supports the concept that one TFM file
descriptor can operate with multiple OP file descriptors. The different OP file
descriptors can perform completely separate cipher operations using the same
key which can execute in parallel. The parallel execution can be performed in the
same or different process threads.

kcapi_handle_reinit function allows the allocation of a new cipher handle
with a new OP file descriptor but using the same TFM file descriptor. To ob-
tain a reference to the TFM file descriptor, an existing cipher handle is used as
source. kcapi_handle_reinit can be invoked multiple times. Each resulting ci-
pher handle must be deallocated with kcapi_cipher_destroy. The deallocation
ensures that the TEM resource is only released if the last handle using this TFM
resource is released.

return 0 upon success; -EINVAL - accept syscall failed -ENOMEM - cipher han-
dle cannot be allocated

kcapi_set_maxsplicesize

LINUX
libkcapi ManualNovember 2022

Name

kcapi_set_maxsplicesize — Set maximum buffer size for splice
Synopsis
int kcapi_set_maxsplicesize (struct kcapi_handle x handle, unsigned

int size);

Arguments

handle
[in] cipher handle allocated by caller.

15

Chapter 3. Programming Interface

size

[in] New maximum buffer size in bytes

Description

When using vmsplice/splice to avoid copying of data into the kernel, the kernel
enforces a maximum number of bytes which can be spliced. If larger data is to be
processed, sendmsg will be used.

Using this call, the buffer size can be increased.

NOTE

Splice uses a pipe pair. Therefore, the maximum number of bytes that can be
stored with the pipe governs the maximum data size to be spliced. Increasing
the pipe buffer size is only allowed up to the maximum specified with
/proc/sys/fs/pipe-max-size.

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_get_maxsplicesize

LINUX

libkcapi ManualNovember 2022

16

Name

kcapi_get_maxsplicesize — Get maximum buffer size for splice
Synopsis

int kcapi_get_maxsplicesize (struct kcapi_handle x handle);

Arguments

handle

[in] cipher handle allocated by caller.

Description
The call returns the maximum number of bytes that can be handled with splice.

return Maximum buffer size in bytes

Chapter 3. Programming Interface

Symmetric Cipher API - Generic

These generic API for symmetric ciphers calls are to be used for both, the one-shot
and the stream encryption/decryption operations.

API function calls used to invoke symmetric ciphers.
kcapi_cipher_init

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_init — initialize cipher handle
Synopsis

int kcapi_cipher_init (struct kcapi_handle %% handle, const char =
ciphername, uint32_t flags);

Arguments

handle

[out] cipher handle filled during the call

ciphername

[in] kernel crypto API cipher name as specified in /proc/crypto

flags
[in] flags specifying the type of cipher handle

Description

This function provides the initialization of a symmetric cipher handle and estab-
lishes the connection to the kernel.

On success, a pointer to kcapi_handle object is returned in *handle. Function
kcapi_cipher_destroy should be called afterwards to free resources.

return 0 upon success; -ENOENT - algorithm not available; -EOPNOTSUPP -
AF_ALG family not available; -EINVAL - accept syscall failed -ENOMEM - cipher
handle cannot be allocated

kcapi_cipher_destroy

LINUX

17

Chapter 3. Programming Interface
libkcapi ManualNovember 2022

Name

kcapi_cipher_destroy — close the cipher handle and release resources
Synopsis

void kcapi_cipher_destroy (struct kcapi_handle x handle);

Arguments

handle

[in] cipher handle to release

kcapi_cipher_setkey

LINUX
libkcapi ManualNovember 2022

Name
kcapi_cipher_setkey — set the key for the cipher handle

Synopsis

int kcapi_cipher_setkey (struct kcapi_handle x handle, const uint8_t
* key, uint32_t keylen);

Arguments

handle

[in] cipher handle

key
[in] key buffer

keylen
[in] length of key buffer

Description
With this function, the caller sets the key for subsequent encryption or decryption
operations.

After the caller provided the key, the caller may securely destroy the key as it is
now maintained by the kernel.

18

Chapter 3. Programming Interface

return 0 upon success (in case of an akcipher handle, a positive integer is re-
turned that denominates the maximum output size of the cryptographic opera-
tion -- this value must be used as the size of the output buffer for one crypto-
graphic operation); a negative errno-style error code if an error occurred

kcapi_cipher_ivsize

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_ivsize — return size of IV required for cipher
Synopsis

uint32_t kcapi_cipher_ivsize (struct kcapi_handle x handle);

Arguments

handle

[in] cipher handle

Description

return > 0 specifying the IV size; 0 on error

kcapi_cipher_blocksize

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_blocksize — return size of one block of the cipher
Synopsis

uint32_t kcapi_cipher_blocksize (struct kcapi_handle x handle);

19

Chapter 3. Programming Interface
Arguments

handle

[in] cipher handle

Description

return > 0 specifying the block size; 0 on error

Synchronous Symmetric Cipher API - One Shot
kcapi_cipher_encrypt

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_encrypt — encrypt data (synchronous one shot)
Synopsis

ssize_t kcapi_cipher_encrypt (struct kcapi_handle % handle, const
uint8_t * in, size_t inlen, const uint8_t * iv, uint8_t =* out,
size_t outlen, int access);

Arguments

handle

[in] cipher handle
in
[in] plaintext data buffer

inlen

[in] length of in buffer
iv
[in] IV to be used for cipher operation

out

[out] ciphertext data buffer

outlen

[in] length of out buffer

20

Chapter 3. Programming Interface

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

It is perfectly legal to use the same buffer as the plaintext and ciphertext pointers.
That would mean that after the encryption operation, the plaintext is overwritten
with the ciphertext.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

return number of bytes encrypted upon success; a negative errno-style error
code if an error occurred

kcapi_cipher_decrypt

LINUX
libkcapi ManualNovember 2022

Name
kcapi_cipher_decrypt — decrypt data (synchronous one shot)

Synopsis

ssize_t kcapi_cipher_decrypt (struct kcapi_handle * handle, const
uint8_t % in, size_t inlen, const uint8_t % iv, uint8_t =* out,
size_t outlen, int access);

Arguments
handle
[in] cipher handle
in
[in] ciphertext data buffer

inlen

[in] length of in buffer

[in] IV to be used for cipher operation

out

[out] plaintext data buffer

21

Chapter 3. Programming Interface

outlen

[in] length of out bufferS

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

It is perfectly legal to use the same buffer as the plaintext and ciphertext pointers.
That would mean that after the encryption operation, the ciphertext is overwrit-
ten with the plaintext.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

return number of bytes decrypted upon success; a negative errno-style error
code if an error occurred

Symmetric Cipher API - Convenience

kcapi_cipher_enc_aes_cbc

LINUX

libkcapi ManualNovember 2022

22

Name

kcapi_cipher_enc_aes_cbc — Convenience function for AES CBC
encryption

Synopsis

ssize_t kcapi_cipher_enc_aes_cbc (const uint8_t * key, uint32_t
keylen, const uint8_t % in, size_t inlen, const uint8_t x iv,
uint8_t * out, size_t outlen);

Arguments
key
[in] key buffer
keylen
[in] length of key buffer
in

[in] plaintext data buffer

Chapter 3. Programming Interface

inlen
[in] length of in buffer
iv
[in] IV to be used for cipher operation

out

[out] ciphertext data buffer

outlen

[in] length of out buffer

Description

The convenience function performs an AES CBC encryption operation using the
provided key, the given input buffer and the given IV. The output is stored in the
out buffer.

Note, AES CBC requires an input data that is a multiple of 16 bytes. If you have
data that is not guaranteed to be multiples of 16 bytes, either add zero bytes at
the end of the buffer to pad it up to a multiple of 16 bytes. Otherwise, the CTR
mode encryption operation may be usable.

The output buffer must be at least as large as the input buffer.
The IV must be exactly 16 bytes in size.

The AES type (AES-128, AES-192 or AES-256) is determined by the size of the
given key. If the key is 16 bytes long, AES-128 is used. A 24 byte key implies
AES-192 and a 32 byte key implies AES-256.

return number of bytes generated upon success; a negative errno-style error
code if an error occurred

kcapi_cipher_dec_aes_cbc

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_dec_aes_cbc — Convenience function for AES CBC
decryption

Synopsis

ssize_t kcapi_cipher_dec_aes_cbc (const uint8_t * key, uint32_t
keylen, const uint8_t * in, size_t inlen, const uint8_t « iv,
uint8_t % out, size_t outlen);

Arguments

key
[in] key buffer
23

Chapter 3. Programming Interface

keylen

[in] length of key buffer
in

[in] ciphertext data buffer

inlen

[in] length of in buffer

[in] IV to be used for cipher operation

out

[out] plaintext data buffer

outlen

[in] length of out buffer

Description

The convenience function performs an AES CBC decryption operation using the
provided key, the given input buffer and the given IV. The output is stored in the
out buffer.

Note, AES CBC requires an input data that is a multiple of 16 bytes. If you have
data that is not guaranteed to be multiples of 16 bytes, either add zero bytes at
the end of the buffer to pad it up to a multiple of 16 bytes. Otherwise, the CTR
mode encryption operation may be usable.

The output buffer must be at least as large as the input buffer.
The IV must be exactly 16 bytes in size.

The AES type (AES-128, AES-192 or AES-256) is determined by the size of the
given key. If the key is 16 bytes long, AES-128 is used. A 24 byte key implies
AES-192 and a 32 byte key implies AES-256.

return number of bytes generated upon success; a negative errno-style error
code if an error occurred

kcapi_cipher_enc_aes_cir

LINUX

libkcapi ManualNovember 2022

24

Name

kcapi_cipher_enc_aes_ctr — Convenience function for AES CTR
encryption

Synopsis

ssize_t kcapi_cipher_enc_aes_ctr (const uint8_t * key, uint32_t
keylen, const uint8_t * in, size_t inlen, const uint8_t =« ctr,
uint8_t % out, size_t outlen);

Chapter 3. Programming Interface

Arguments

key
[in] key buffer

keylen

[in] length of key buffer
in

[in] plaintext data buffer

inlen

[in] length of in buffer

ctr

[in] start counter value to be used for cipher operation

out

[out] ciphertext data buffer

outlen

[in] length of out buffer

Description

The convenience function performs an AES counter mode encryption operation
using the provided key, the given input buffer and the given IV. The output is
stored in the out buffer.

The input buffer can be of arbitrary length.
The output buffer must be at least as large as the input buffer.

The start counter can contain all zeros (not a NULL buffer!) and must be exactly
16 bytes in size.

The AES type (AES-128, AES-192 or AES-256) is determined by the size of the
given key. If the key is 16 bytes long, AES-128 is used. A 24 byte key implies
AES-192 and a 32 byte key implies AES-256.

return number of bytes generated upon success; a negative errno-style error
code if an error occurred

kcapi_cipher_dec_aes_cir

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_dec_aes_ctr — Convenience function for AES CTR
decryption

25

Chapter 3. Programming Interface

26

Synopsis

ssize_t kcapi_cipher_dec_aes_ctr (const uint8_t * key, uint32_t
keylen, const uint8_t % in, size_t inlen, const uint8_t « ctr,
uint8_t * out, size_t outlen);

Arguments

key
[in] key buffer

keylen

[in] length of key buffer
in

[in] ciphertext data buffer

inlen

[in] length of in buffer

ctr

[in] start counter value to be used for cipher operation

out

[out] plaintext data buffer

outlen

[in] length of out buffer

Description

The convenience function performs an AES counter mode encryption operation
using the provided key, the given input buffer and the given IV. The output is
stored in the out buffer.

The input buffer can be of arbitrary length.
The output buffer must be at least as large as the input buffer.

The start counter can contain all zeros (not a NULL buffer!) and must be exactly
16 bytes in size.

The AES type (AES-128, AES-192 or AES-256) is determined by the size of the
given key. If the key is 16 bytes long, AES-128 is used. A 24 byte key implies
AES-192 and a 32 byte key implies AES-256.

return number of bytes generated upon success; a negative errno-style error
code if an error occurred

Chapter 3. Programming Interface

Asynchronous Symmetric Cipher API - One Shot
kcapi_cipher_encrypt_aio

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_encrypt_aio — encrypt data (asynchronous one shot)
Synopsis

ssize_t kcapi_cipher_encrypt_aio (struct kcapi_handle % handle,
struct iovec * iniov, struct iovec * outiov, Size_t iovlen, const
uint8_t % iv, int access);

Arguments

handle
[in] cipher handle
iniov
[in] head of scatter-gather list array holding the plaintext
outiov
[out] head of scatter-gather list of the destination buffers filled with cipher-
text
iovlen
[in] number of scatter-gather list entries
iv
[in] IV to be used for cipher operation

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The individual scatter-gather list entries are processed with separate invocations
of the the given cipher.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

return number of bytes encrypted upon success; a negative errno-style error
code if an error occurred

27

Chapter 3. Programming Interface

kcapi_cipher_decrypt_aio

LINUX

libkcapi ManualNovember 2022

28

Name

kcapi_cipher_decrypt_aio— decrypt data (asynchronous one shot)
Synopsis

ssize_t kcapi_cipher_decrypt_aio (struct kcapi_handle % handle,
struct iovec x iniov, struct iovec % outiov, size_t iovlen, const
uint8_t * iv, 1int access);

Arguments

handle
[in] cipher handle
iniov
[in] head of scatter-gather list array holding the ciphertext

outiov

[out] head of scatter-gather list with the destination buffers for the plaintext

iovlen

[in] number of scatter-gather list entries
iv

[in] IV to be used for cipher operation

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The individual scatter-gather list entries are processed with separate invocations
of the the given cipher.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

return number of bytes decrypted upon success; a negative errno-style error
code if an error occurred

Chapter 3. Programming Interface

Synchronous Symmetric Cipher API - Stream

The stream API requires that first the cipher operation type is set with the init
call, followed by an arbitrary number and mix of the update and op calls.

kcapi_cipher_stream_init_enc

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_stream_init_enc — start an encryption operation (stream)
Synopsis

ssize_t kcapi_cipher_stream_init_enc (struct kcapi_handle % handle,
const uint8_t * iv, struct iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle

iv
[in] IV to be used for cipher operation

iov
[in] scatter/gather list with data to be encrypted. This is the pointer to the
first iov entry if an array of iov entries is supplied. See sendmsg(2) for de-
tails on how iov is to be used. This pointer may be NULL if no data to be
encrypted is available at the point of the call.

iovlen
[in] number of scatter/gather list elements. If iov is NULL, this value must
be zero.

Description

A stream encryption operation is started with this call. Multiple successive
kcapi_cipher_stream_update function calls can be invoked to send
more plaintext data to be encrypted. The kernel buffers the input until
kcapi_cipher_stream op picks up the encrypted data. Once plaintext is
encrypted during the kcapi_cipher_stream_op it is removed from the kernel

buffer.

The function calls of kcapi_cipher_stream_update and
kcapi_cipher_stream op can be mixed, even by multiple threads of an
application.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

29

Chapter 3. Programming Interface

kcapi_cipher_stream_init_dec

LINUX

libkcapi ManualNovember 2022

30

Name

kcapi_cipher_stream_init_dec — start a decryption operation (stream)
Synopsis

ssize_t kcapi_cipher_stream_init_dec (struct kcapi_handle * handle,
const uint8_t * iv, struct iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle

[in] IV to be used for cipher operation

iov
[in] scatter/gather list with data to be encrypted. This is the pointer to the
first iov entry if an array of iov entries is supplied. See sendmsg(2) for de-

tails on how iov is to be used. This pointer may be NULL if no data to be
encrypted is available at the point of the call.

iovlen

[in] number of scatter/gather list elements. If iov is NULL, this value must
be zero.

Description

A stream decryption operation is started with this call. Multiple successive
kcapi_cipher_stream_update function «calls can be invoked to send
more ciphertext data to be decrypted. The kernel buffers the input until
kcapi_cipher_stream op picks up the decrypted data. Once ciphertext is
decrypted during the kcapi_cipher_stream_op it is removed from the kernel
buffer.

The function calls of kcapi_cipher_stream_update and
kcapi_cipher_stream op can be mixed, even by multiple threads of an
application.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

Chapter 3. Programming Interface
kcapi_cipher_stream_update

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_stream_update — send more data for processing (stream)
Synopsis

ssize_t kcapi_cipher_stream_update (struct kcapi_handle x handle,
struct iovec x iov, size_t iovlen);

Arguments

handle
[in] cipher handle

iov
[in] scatter/gather list with data to be processed by the cipher operation.

iovlen

[in] number of scatter/gather list elements.

Description

Using this function call, more plaintext for encryption or ciphertext for decryp-
tion can be submitted to the kernel.

This function may cause the caller to sleep if the kernel buffer holding the data
is getting full. The process will be woken up once more buffer space becomes
avaﬂabkzbycaﬂhu;kcapi_cipher_stream_op.

Note

with the separate API calls of kcapi_cipher_stream update and
kcapi_cipher_stream_op a multi-threaded application can be implemented
where one thread sends data to be processed and one thread picks up data
processed by the cipher operation.

IMPORTANT NOTE

The kernel will only process sysconf(_SC_PAGESIZE) * ALG_MAX_PAGES at
one time. If your input data is larger than this threshold, you MUST segment
it into chunks of at most sysconf(_SC_PAGESIZE) * ALG_MAX_PAGES and
invoke the kcapi_cipher_ stream_update on that segment followed by
kcapi_cipher_stream_op before the next chunk is processed. If this rule is not
obeyed, the thread invoking kcapi_cipher_stream_update will be put to sleep
until another thread invokes kcapi_cipher_stream_op.

31

Chapter 3. Programming Interface

WARNING

The memory referenced by iov is not accessed by the kernel during this call.
The memory is first accessed when kcapi_cipher_stream op is called. Thus,
you MUST make sure that the referenced memory is still present at the time
kcapi_cipher_stream_op is called.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_cipher_stream_update_last

LINUX

libkcapi ManualNovember 2022

32

Name

kcapi_cipher_stream_update_last — send last data for processing
(stream)

Synopsis

ssize_t kcapi_cipher_stream update_last (struct kcapi_handle =
handle, struct iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle
iov
[in] scatter / gather list with data to be processed by the cipher operation.

iovlen

[in] number of scatter/gather list elements.

Description

Using this function call, more plaintext for encryption or ciphertext for decryp-
tion can be submitted to the kernel.

This call is identical to the kcapi_cipher_stream update call with the exception
that it marks the last data buffer before the cipher operation is triggered. This is
call is important for stream ciphers like CTR or CTS mode when providing the
last block. It is permissible to provide a zero buffer if all data including the last
block is already provided by kcapi_cipher_stream_update.

WARNING

If this call is not made for stream ciphers with input data that is not a multiple
of the block size of the block cipher, the kernel will not return the last block that
contains less data than the block size of the block cipher. For example, sending

Chapter 3. Programming Interface

257 bytes of data to be encrypted with ctr(aes), the kernel will return only 256
bytes without this call.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_cipher_stream_op

LINUX
libkcapi ManualNovember 2022

Name

kcapi_cipher_stream_op — obtain processed data (stream)
Synopsis

ssize_t kcapi_cipher_stream _op (struct kcapi_handle x handle, struct
iovec * iov, size_t iovlen);

Arguments

handle

[in] cipher handle
iov

[out] scatter/gather list pointing to buffers to be filled with the resulting data
from a cipher operation.

iovlen

[in] number of scatter/gather list elements.

Description

This call can be called interleaved with kcapi_cipher_stream_ update to fetch
the processed data.

This function may cause the caller to sleep if the kernel buffer holding the data
is empty. The process will be woken up once more data is sent by calling
kcapi_cipher_stream_update.

Note, when supplying buffers that are not multiple of block size, the buffers will
only be filled up to the maximum number of full block sizes that fit into the buffer.

The kernel supports multithreaded applications where one or more threads send
data via the kcapi_cipher_stream_update function and another thread collects
the processed data via kcapi_cipher_stream_op. The kernel, however, will return
data via kcapi_cipher_stream_op as soon as it has some data available. For
example, one thread sends 1000 bytes to be encrypted and another thread already
waits for the ciphertext. The kernel may send only, say, 500 bytes back to the
waiting process during one kcapi_cipher_stream_op call. In a subsequent calls
to kcapi_cipher_stream_op more ciphertext is returned. This implies that when
the receiving thread shall collect all data thereis, kcapi_cipher_stream_op must
be called in a loop until all data is received.

33

Chapter 3. Programming Interface

returnnumber of bytes obtained from the kernel upon success; a negative errno-
style error code if an error occurred

AEAD Cipher API - Generic

These generic API for symmetric ciphers calls are to be used for both, the one-shot
and the stream encryption/decryption operations.

The following API calls allow using the Authenticated Encryption with Associ-
ated Data.

kcapi_aead_init

LINUX

libkcapi ManualNovember 2022

34

Name

kcapi_aead_init — initialization of cipher handle
Synopsis

int kcapi_aead_init (struct kcapi_handle ** handle, const char x
ciphername, uint32_t flags);

Arguments

handle

[out] cipher handle filled during the call

ciphername

[in] kernel crypto API cipher name as specified in /proc/crypto

flags
[in] flags specifying the type of cipher handle

Description

This function initializes an AEAD cipher handle and establishes the connection
to the kernel.

On success, a pointer to kcapi_handle object is returned in *handle. Function
kcapi_aead_destroy should be called afterwards to free resources.

return 0 upon success; -ENOENT - algorithm not available; -EOPNOTSUPP -
AF_ALG family not available; -EINVAL - accept syscall failed -ENOMEM - cipher
handle cannot be allocated

Chapter 3. Programming Interface

kcapi_aead_destroy

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_destroy — close the AEAD handle and release resources
Synopsis

void kcapi_aead_destroy (struct kcapi_handle * handle);

Arguments

handle

[in] cipher handle to release

kcapi_aead_setkey

LINUX
libkcapi ManualNovember 2022

Name
kcapi_aead_setkey — set the key for the AEAD handle

Synopsis

int kcapi_aead_setkey (struct kcapi_handle % handle, const uint8_t =
key, uint32_t keylen);

Arguments
handle
[in] cipher handle

key
[in] key buffer

keylen
[in] length of key buffer

35

Chapter 3. Programming Interface

Description

With this function, the caller sets the key for subsequent encryption or decryption
operations.

After the caller provided the key, the caller may securely destroy the key as it is
now maintained by the kernel.

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_aead_setassoclen

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_setassoclen — set authentication data size
Synopsis

void kcapi_aead_setassoclen (struct kcapi_handle x handle, size_t
assoclen) ;

Arguments

handle

[in] cipher handle

assoclen

[in] length of associated data length

Description

The associated data is retained in the cipher handle. During initialization of a
cipher handle, it is sent to the kernel. The kernel cipher implementations may
verify the appropriateness of the authentication data size and may return an error
during initialization if the authentication size is not considered appropriate.

kcapi_aead_settaglen

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_settaglen — set authentication tag size

36

Chapter 3. Programming Interface

Synopsis

int kcapi_aead_settaglen (struct kcapi_handle % handle, uint32_t
taglen) ;

Arguments

handle

[in] cipher handle

taglen

[in] length of authentication tag

Description

Set the authentication tag size needed for encryption operation. The tag is created
during encryption operation with the size provided with this call.

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_aead_ivsize

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_ivsize — return size of IV required for cipher
Synopsis

uint32_t kcapi_aead_ivsize (struct kcapi_handle % handle);

Arguments

handle

[in] cipher handle

Description

return > 0 specifying the IV size; 0 on error

37

Chapter 3. Programming Interface

kcapi_aead_blocksize

LINUX

libkcapi ManualNovember 2022

Name

kcapi_aead_blocksize — return size of one block of the cipher
Synopsis

uint32_t kcapi_aead_blocksize (struct kcapi_handle handle);

Arguments
handle

[in] cipher handle

Description

return > 0 specifying the block size; 0 on error

kcapi_aead_authsize

LINUX

libkcapi ManualNovember 2022

38

Name

kcapi_aead_authsize — return the maximum size of the tag
Synopsis

uint32_t kcapi_aead_authsize (struct kcapi_handle x handle);

Arguments

handle
[in] cipher handle

Chapter 3. Programming Interface

Description

The returned maximum is the largest size of the authenticaation tag that can be
produced by the AEAD cipher. Smaller tag sizes may be chosen depending on
the AEAD cipher type.

return > 0 specifying the block size; 0 on error

kcapi_aead_inbuflen_enc

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_inbuflen_enc — return minimum encryption input buffer
length

Synopsis

size_t kcapi_aead_inbuflen_enc (struct kcapi_handle * handle, size_t
inlen, size_t assoclen, size_t taglen);

Arguments
handle
[in] cipher handle

inlen

[in] size of plaintext

assoclen

[in] size of associated data (AD)

taglen

[in] size of authentication tag

Description

return minimum size of input data length in bytes

kcapi_aead_inbuflen_dec

LINUX

39

Chapter 3. Programming Interface
libkcapi ManualNovember 2022

Name

kcapi_aead_inbuflen_dec — return minimum decryption input buffer
length

Synopsis

size_t kcapi_aead_inbuflen_dec (struct kcapi_handle % handle, size_t
inlen, size_t assoclen, size_t taglen);

Arguments
handle
[in] cipher handle

inlen

[in] size of ciphertext

assoclen

[in] size of associated data (AD)

taglen

[in] size of authentication tag

Description

return minimum size of output data length in bytes

kcapi_aead_outbuflen_enc

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_outbuflen_enc — return minimum encryption output buffer
length

Synopsis

size_t kcapi_aead_outbuflen_enc (struct kcapi_handle x handle,
size_t inlen, size_t assoclen, size_t taglen);

40

Chapter 3. Programming Interface
Arguments
handle

[in] cipher handle

inlen

[in] size of plaintext

assoclen

[in] size of associated data (AD)

taglen

[in] size of authentication tag

Description

return minimum size of output data length in bytes

kcapi_aead_outbuflen_dec

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_outbuflen_dec — return minimum decryption output buffer
length

Synopsis

size_t kcapi_aead_outbuflen_dec (struct kcapi_handle x handle,
size_t inlen, size_t assoclen, size_t taglen);

Arguments
handle
[in] cipher handle

inlen

[in] size of ciphertext

assoclen

[in] size of associated data (AD)

taglen

[in] size of authentication tag

41

Chapter 3. Programming Interface

Description

return minimum size of output data length in bytes

kcapi_aead_ccm_nonce_to_iv

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_ccm_nonce_to_iv — convert CCM nonce into IV
Synopsis

int kcapi_aead_ccm_nonce_to_iv (const uint8_t * nonce, uint32_t
noncelen, uint8_t % iv, uint32_t = ivlen);

Arguments
nonce
[in] buffer with nonce

noncelen

[in] length of nonce

[out] newly allocated buffer with IV

ivlen

[out] length of IV

Description

This service function converts a CCM nonce value into an IV usable by the kernel
crypto APL

Caller must free iv.

return 0 upon success; < 0 upon failure

kcapi_aead_getdata_input

LINUX

42

Chapter 3. Programming Interface
libkcapi ManualNovember 2022

Name

kcapi_aead_getdata_input — get the pointers into input buffer
Synopsis

void kcapi_aead_getdata_input (struct kcapi_handle * handle, uint8_t
* encdata, Size_t encdatalen, int enc, uint8_t *x aad, size_t =«
aadlen, uint8_t ** data, size_t * datalen, uint8_t ** tag, size_t =
taglen) ;

Arguments

handle

[in] cipher handle

encdata

[in] data buffer returned by the encryption operation

encdatalen

[in] size of the encryption data buffer

enc

[in] does output buffer hold encryption or decryption result?

aad

[out] AD buffer pointer; when set to NULL, no data pointer is returned

aadlen

[out] length of AD; when aad was set to NULL, no information is returned

data
[out] pointer to output buffer from AEAD encryption operation when set to
NULL, no data pointer is returned

datalen
[out] length of data buffer; when data was set to NULL, no information is
returned

tag
[out] tag buffer pointer; when set to NULL, no data pointer is returned

taglen

[out] length of tag; when tag was set to NULL, no information is returned

Description

This function is a service function to the consumer to locate the right ciphertext
buffer offset holding the authentication tag. In addition, it provides the consumer
with the length of the tag and the length of the ciphertext.

43

Chapter 3. Programming Interface

kcapi_aead_getdata_output

LINUX

libkcapi ManualNovember 2022

44

Name
kcapi_aead_getdata_output — get the pointers into output buffer

Synopsis

void kcapi_aead_getdata_output (struct kcapi_handle x handle,
uint8_t « encdata, size_t encdatalen, int enc, uint8_t *x aad,
size_t % aadlen, uint8_t =xx data, size_t % datalen, uint8_t #*x* tag,
size_t * taglen);

Arguments

handle

[in] cipher handle

encdata

[in] data buffer returned by the encryption operation

encdatalen

[in] size of the encryption data buffer

enc

[in] does output buffer hold encryption or decryption result?

aad
[out] AD buffer pointer; when set to NULL, no data pointer is returned; re-
turned pointer may also be NULL

aadlen

[out] length of AD; when aad was set to NULL, no information is returned

data
[out] pointer to output buffer from AEAD encryption operation when set to
NULL, no data pointer is returned

datalen
[out] length of data buffer; when data was set to NULL, no information is
returned

tag
[out] tag buffer pointer; when set to NULL, no data pointer is returned; re-
turned pointer may also be NULL

taglen

[out] length of tag; when tag was set to NULL, no information is returned

Chapter 3. Programming Interface

Description

This function is a service function to the consumer to locate the right ciphertext
buffer offset holding the authentication tag. In addition, it provides the consumer
with the length of the tag and the length of the ciphertext.

Synchronous AEAD Cipher API - One Shot
kcapi_aead_encrypt

LINUX
libkcapi ManualNovember 2022

Name
kcapi_aead_encrypt — synchronously encrypt AEAD data (one shot)

Synopsis

ssize_t kcapi_aead_encrypt (struct kcapi_handle * handle, const
uint8_t * in, size_t inlen, const uint8_t * iv, uint8_t =* out,
size_t outlen, int access);

Arguments

handle
[in] cipher handle
in
[in] plaintext data buffer
inlen
[in] length of plaintext buffer
iv
[in] IV to be used for cipher operation

out

[out] data buffer holding cipher text and authentication tag

outlen

[in] length of out buffer

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

45

Chapter 3. Programming Interface

Description

The AEAD cipher operation requires the furnishing of the associated authenti-
cation data. In case such data is not required, it can be set to NULL and length
value must be set to zero.

It is perfectly legal to use the same buffer as the plaintext and ciphertext pointers.
That would mean that after the encryption operation, the plaintext is overwritten
with the ciphertext.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

After invoking this function the caller should use kcapi_aead_getdata_output
to obtain the resulting ciphertext and authentication tag references.

IMPORTANT NOTE

The kernel will only process sysconf(_SC_PAGESIZE) * ALG_MAX_PAGES at
one time. Longer input data cannot be handled by the kernel.

return number of bytes encrypted upon success; a negative errno-style error
code if an error occurred

kcapi_aead_decrypt

LINUX

libkcapi ManualNovember 2022

46

Name
kcapi_aead_decrypt — synchronously decrypt AEAD data (one shot)

Synopsis

ssize_t kcapi_aead_decrypt (struct kcapi_handle *x handle, const
uint8_t * in, size_t inlen, const uint8_t * iv, uint8_t =* out,
size_t outlen, int access);

Arguments

handle
[in] cipher handle
in
[in] ciphertext data buffer
inlen
[in] length of in buffer
iv

[in] IV to be used for cipher operation

Chapter 3. Programming Interface

out

[out] plaintext data buffer

outlen

[in] length of out buffer

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE use vmsplice access;
KCAPI_ACCESS_SENDMSG sendmsg access)

Description

The AEAD cipher operation requires the furnishing of the associated authenti-
cation data. In case such data is not required, it can be set to NULL and length
value must be set to zero.

It is perfectly legal to use the same buffer as the plaintext and ciphertext pointers.
That would mean that after the encryption operation, the ciphertext is overwrit-
ten with the plaintext.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

To catch authentication errors (i.e. integrity violations) during the decryption op-
eration, the return value of this call should be checked. If this function returns
-EBADMSG, an authentication error was detected.

IMPORTANT NOTE

The kernel will only process sysconf(_SC_PAGESIZE) * ALG_MAX_PAGES at
one time. Longer input data cannot be handled by the kernel.

return number of bytes decrypted upon success; a negative errno-style error
code if an error occurred

Aynchronous AEAD Cipher API - One Shot
kcapi_aead_encrypt_aio

LINUX
libkcapi ManualNovember 2022

Name
kcapi_aead_encrypt_aio— asynchronously encrypt AEAD data (one shot)

Synopsis

ssize_t kcapi_aead_encrypt_aio (struct kcapi_handle x handle, struct
iovec * iniov, struct iovec * outiov, size_t iovlen, const uint8_t
* iv, 1int access);

47

Chapter 3. Programming Interface

Arguments

handle
[in] cipher handle
iniov
[in] array of scatter-gather list with input buffers

outiov

[out] array of scatter-gather list with output buffers

iovlen
[in] number of IOVECs in array
iv
[in] IV to be used for cipher operation

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The AEAD cipher operation requires the furnishing of the associated authenti-
cation data. In case such data is not required, it can be set to NULL and length
value must be set to zero.

Each IOVEC is processed with its individual AEAD cipher operation. The mem-
ory holding the input data will receive the processed data.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

After invoking this function the caller should use kcapi_aead_getdata_output
to obtain the resulting ciphertext and authentication tag references.

IMPORTANT NOTE

The kernel will only process sysconf(_SC_PAGESIZE) * ALG_MAX_PAGES at
one time. Longer input data cannot be handled by the kernel.

return number of bytes encrypted upon success; a negative errno-style error
code if an error occurred

kcapi_aead_decrypt_aio

48

LINUX

Chapter 3. Programming Interface

libkcapi ManualNovember 2022

Name
kcapi_aead_decrypt_aio — asynchronously decrypt AEAD data (one shot)

Synopsis

ssize_t kcapi_aead_decrypt_aio (struct kcapi_handle x handle, struct
iovec * iniov, struct iovec * outiov, size_t iovlen, const uint8_t
* iv, 1int access);

Arguments

handle
[in] cipher handle
iniov
[in] array of scatter-gather list with input buffers

outiov

[out] array of scatter-gather list with output buffers

iovlen
[in] number of IOVECs in array
iv
[in] IV to be used for cipher operation

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The AEAD cipher operation requires the furnishing of the associated authenti-
cation data. In case such data is not required, it can be set to NULL and length
value must be set to zero.

Each IOVEC is processed with its individual AEAD cipher operation. The mem-
ory holding the input data will receive the processed data.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

To catch authentication errors (i.e. integrity violations) during the decryption op-
eration, the return value of this call should be checked. If this function returns
-EBADMSG, an authentication error was detected.

49

Chapter 3. Programming Interface

IMPORTANT NOTE

The kernel will only process sysconf(_SC_PAGESIZE) * ALG_MAX_PAGES at
one time. Longer input data cannot be handled by the kernel.

return number of bytes encrypted upon success; a negative errno-style error
code if an error occurred

Synchronous AEAD Cipher API - Stream

kcapi_aead_stream_init_enc

LINUX

libkcapi ManualNovember 2022

50

Name

kcapi_aead_stream_init_enc — start an encryption operation (stream)
Synopsis

ssize_t kcapi_aead_stream_init_enc (struct kcapi_handle x handle,
const uint8_t * iv, struct iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle
iv
[in] IV to be used for cipher operation
iov
[in] scatter/gather list with data to be encrypted. This is the pointer to the
first iov entry if an array of iov entries is supplied. See sendmsg(2) for de-

tails on how iov is to be used. This pointer may be NULL if no data to be
encrypted is available at the point of the call.

iovlen

[in] number of scatter/gather list elements. If iov is NULL, this value must
be zero.

Description

A stream encryption operation is started with this call. Multiple successive
kcapi_aead_stream update function «calls can be invoked to send
more plaintext data to be encrypted. The kernel buffers the input until
kcapi_aead_stream_op picks up the encrypted data. Once plaintext is
encrypted during the kcapi_aead_stream_op it is removed from the kernel
buffer.

Chapter 3. Programming Interface

Note, unlike the corresponding symmetric cipher API, the function calls of
kcapi_aead_stream_update and kcapi_aead_stream_op cannot be mixed!
This due to the nature of AEAD where the cipher operation ensures the integrity
of the entire data (decryption) or calculates a message digest over the entire data
(encryption).

When using the stream API, the caller must ensure that data is sent in
the correct order (regardless whether data is sent in multiple chunks using
kcapi_aead_stream_init_enc oOr kcapi_cipher_stream_update) ﬁ) the
complete associated data must be provided, followed by (ii) the plaintext.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_aead_stream_init_dec

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_stream_init_dec — start a decryption operation (stream)
Synopsis

ssize_t kcapi_aead_stream_init_dec (struct kcapi_handle x handle,
const uint8_t * iv, struct iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle

iv
[in] IV to be used for cipher operation

iov
[in] scatter/gather list with data to be encrypted. This is the pointer to the
first iov entry if an array of iov entries is supplied. See sendmsg(2) for de-
tails on how iov is to be used. This pointer may be NULL if no data to be
encrypted is available at the point of the call.

iovlen

[in] number of scatter/gather list elements. If iov is NULL, this value must
be zero.

Description

A stream decryption operation is started with this call. Multiple successive
kcapi_aead_stream update function «calls can be invoked to send
more ciphertext data to be encrypted. The kernel buffers the input until

51

Chapter 3. Programming Interface

kcapi_aead_stream op picks up the decrypted data. Once ciphertext is
decrypted during the kcapi_aead_stream op it is removed from the kernel
buffer.

Note, unlike the corresponding symmetric cipher API, the function calls of
kcapi_aead_stream_update and kcapi_aead_stream op cannot be mixed!
This due to the nature of AEAD where the cipher operation ensures the integrity
of the entire data (decryption) or calculates a message digest over the entire data
(encryption).

When using the stream API, the caller must ensure that data is sent in
the correct order (regardless whether data is sent in multiple chunks using
kcapi_aead_stream_init_enc oOr kcapi_cipher_stream_updatey ﬁ) the
complete associated data must be provided, followed by (ii) the plaintext. For
decryption, also (iii) the tag value must be sent.

The IV buffer must be exactly kcapi_cipher_ivsize bytes in size.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_aead_stream_update

LINUX

libkcapi ManualNovember 2022

52

Name

kcapi_aead_stream_update — send more data for processing (stream)
Synopsis

ssize_t kcapi_aead_stream_update (struct kcapi_handle x handle,
struct iovec x iov, size_t iovlen);

Arguments

handle
[in] cipher handle
iov
[in] scatter/gather list with data to be processed by the cipher operation.

iovlen

[in] number of scatter/gather list elements.

Description

Using this function call, more plaintext for encryption or ciphertext for decryp-
tion can be submitted to the kernel.

Note, see the order of input data as outlined in kcapi_aead_stream_init_dec.

Chapter 3. Programming Interface

This function may cause the caller to sleep if the kernel buffer holding the data
is getting full. The process will be woken up once more buffer space becomes
available by calling kcapi_aead_stream_op.

Note

The last block of input data MUST be provided with
kcapi_aead_stream update_last as the kernel must be informed about the
completion of the input data.

With the separate APl «calls of kcapi_aead stream update and
kcapi_aead_stream op a multi-threaded application can be implemented
where one thread sends data to be processed and one thread picks up data
processed by the cipher operation.

WARNING

The memory referenced by iov is not accessed by the kernel during this call.
The memory is first accessed when kcapi_cipher_stream op is called. Thus,
you MUST make sure that the referenced memory is still present at the time
kcapi_cipher_stream_opiscaﬂed.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_aead_stream_update_last

LINUX
libkcapi ManualNovember 2022

Name

kcapi_aead_stream_update_last — send last data for processing (stream)
Synopsis

ssize_t kcapi_aead_stream update_last (struct kcapi_handle * handle,
struct iovec * iov, size_t iovlen);

Arguments
handle
[in] cipher handle
iov
[in] scatter/gather list with data to be processed by the cipher operation.

iovlen

[in] number of scatter/gather list elements.

53

Chapter 3. Programming Interface

Description

Using this function call, more plaintext for encryption or ciphertext for decryp-
tion can be submitted to the kernel.

This call is identical to the kcapi_aead_stream update call with the exception
that it marks the last data buffer before the cipher operation is triggered. Typi-
cally, the tag value is provided with this call.

WARNING

The memory referenced by iov is not accessed by the kernel during this call.
The memory is first accessed when kcapi_cipher_stream op is called. Thus,
you MUST make sure that the referenced memory is still present at the time
kcapi_cipher_stream_op is called.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_aead_stream_op

LINUX

libkcapi ManualNovember 2022

54

Name

kcapi_aead_stream_op — obtain processed data (stream)
Synopsis

ssize_t kcapi_aead_stream op (struct kcapi_handle * handle, struct
iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle

iov
[out] scatter/gather list pointing to buffers to be filled with the resulting data
from a cipher operation.

iovlen

[in] number of outiov scatter/gather list elements.

Description

This function may cause the caller to sleep if the kernel buffer holding the data
is empty. The process will be woken up once more data is sent by calling
kcapi_cipher_stream_update.

Note, when supplying buffers that are not multiple of block size, the buffers will
only be filled up to the maximum number of full block sizes that fit into the buffer.

Chapter 3. Programming Interface

returnnumber of bytes obtained from the kernel upon success; a negative errno-
style error code if an error occurred

Message Digest Cipher API - Generic

kcapi_md_init

LINUX
libkcapi ManualNovember 2022

Name

kcapi_md_init — initialize cipher handle
Synopsis

int kcapi_md_init (struct kcapi_handle xx handle, const char =
ciphername, uint32_t flags);

Arguments

handle

[out] cipher handle filled during the call

ciphername

[in] kernel crypto API cipher name as specified in /proc/crypto

flags
[in] flags specifying the type of cipher handle

Description

This function provides the initialization of a (keyed) message digest handle and
establishes the connection to the kernel.

On success, a pointer to kcapi_handle object is returned in *handle. Function
kcapi_md_destroy should be called afterwards to free resources.

return 0 upon success; -ENOENT - algorithm not available; -EOPNOTSUPP -
AF_ALG family not available; -EINVAL - accept syscall failed; -ENOMEM - ci-
pher handle cannot be allocated

kcapi_md_destroy

LINUX

55

Chapter 3. Programming Interface
libkcapi ManualNovember 2022

Name

kcapi_md_destroy — close the message digest handle and release resources
Synopsis

void kcapi_md_destroy (struct kcapi_handle * handle);

Arguments

handle

[in] cipher handle to release

kcapi_md_setkey

LINUX
libkcapi ManualNovember 2022

Name
kcapi_md_setkey — set the key for the message digest handle

Synopsis

int kcapi_md_setkey (struct kcapi_handle * handle, const uint8_t =
key, uint32_t keylen);

Arguments

handle

[in] cipher handle

key
[in] key buffer

keylen
[in] length of key buffer

Description
With this function, the caller sets the key for subsequent hashing operations. This
call is applicable for keyed message digests.

After the caller provided the key, the caller may securely destroy the key as it is
now maintained by the kernel.

56

Chapter 3. Programming Interface

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_md_digestsize

LINUX
libkcapi ManualNovember 2022

Name

kcapi_md_digestsize — return the size of the message digest
Synopsis

uint32_t kcapi_md_digestsize (struct kcapi_handle x handle);

Arguments

handle

[in] cipher handle

Description

The returned message digest size can be used before the kcapi_md_final function
invocation to determine the right memory size to be allocated for this call.

return > 0 specifying the block size; 0 on error

Message Digest Cipher API - One Shot
kcapi_md_digest

LINUX
libkcapi ManualNovember 2022

Name

kcapi_md_digest — calculate message digest on buffer (one-shot)
Synopsis

ssize_t kcapi_md_digest (struct kcapi_handle * handle, const
uint8_t =+ in, size_t inlen, uint8_t = out, size_t outlen);

57

Chapter 3. Programming Interface
Arguments

handle
[in] cipher handle
in
[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

Description

With this one-shot function, a message digest of the given buffer is generated.
The output buffer must be allocated by the caller and have at least the length of
the message digest size for the chosen message digest.

The message digest handle must have been initialized, potentially by also setting
the key using the generic message digest API functions.

The input buffer can be at most INT_MAX in size.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

Message Digest Cipher API - Convenience
kcapi_md_sha1

LINUX
libkcapi ManualNovember 2022

Name
kcapi_md_shal — SHA-1 message digest on one buffer

Synopsis

ssize_t kcapi_md_shal (const uint8_t % in, size_t inlen, uint8_t =
out, size_t outlen);

58

Chapter 3. Programming Interface
Arguments
in
[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

Description

With this one-shot convenience function, a message digest of the given buffer is
generated. The output buffer must be allocated by the caller and have at least the
length of the message digest size for the chosen message digest.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

kcapi_md_sha224

LINUX
libkcapi ManualNovember 2022

Name
kcapi_md_sha224 — SHA-224 message digest on one buffer

Synopsis

ssize_t kcapi_md_sha224 (const uint8_t % in, size_t inlen, uint8_t =«
out, size_t outlen);

Arguments
in
[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

59

Chapter 3. Programming Interface

outlen

[in] length of out

Description

With this one-shot convenience function, a message digest of the given buffer is
generated. The output buffer must be allocated by the caller and have at least the
length of the message digest size for the chosen message digest.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

kcapi_md_sha256

LINUX

libkcapi ManualNovember 2022

60

Name
kcapi_md_sha256 — SHA-256 message digest on one buffer

Synopsis

ssize_t kcapi_md_sha256 (const uint8_t % in, size_t inlen, uint8_t =«
out, size_t outlen);

Arguments

in
[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

Description

With this one-shot convenience function, a message digest of the given buffer is
generated. The output buffer must be allocated by the caller and have at least the
length of the message digest size for the chosen message digest.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

Chapter 3. Programming Interface

kcapi_md_sha384

LINUX
libkcapi ManualNovember 2022

Name
kcapi_md_sha384 — SHA-384 message digest on one buffer

Synopsis

ssize_t kcapi_md_sha384 (const uint8_t % in, size_t inlen, uint8_t =«
out, size_t outlen);

Arguments

in
[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

Description

With this one-shot convenience function, a message digest of the given buffer is
generated. The output buffer must be allocated by the caller and have at least the
length of the message digest size for the chosen message digest.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

kcapi_md_sha512

LINUX
libkcapi ManualNovember 2022

Name
kcapi_md_sha512 — SHA-512 message digest on one buffer

61

Chapter 3. Programming Interface

Synopsis

ssize_t kcapi_md_sha512 (const uint8_t = in, size_t inlen, uint8_t =«
out, size_t outlen);

Arguments
in
[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

Description

With this one-shot convenience function, a message digest of the given buffer is
generated. The output buffer must be allocated by the caller and have at least the
length of the message digest size for the chosen message digest.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

kcapi_md_hmac_sha1

LINUX
libkcapi ManualNovember 2022

Name
kcapi_md_hmac_shal —HMAC SHA-1 keyed message digest on one buffer

Synopsis

ssize_t kcapi_md_hmac_shal (const uint8_t = key, uint32_t keylen,
const uint8_t * in, size_t inlen, uint8_t = out, size_t outlen);

Arguments

key
[in] buffer with HMAC key

62

Chapter 3. Programming Interface

keylen

[in] length of HMAC key buffer
in

[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

Description

With this one-shot convenience function, a keyed message digest of the given
buffer is generated. The output buffer must be allocated by the caller and have at
least the length of the message digest size for the chosen keyed message digest.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

kcapi_md_hmac_sha224

LINUX
libkcapi ManualNovember 2022

Name

kcapi_md_hmac_sha224 — HMAC SHA-224 keyed message digest on one
buffer

Synopsis

ssize_t kcapi_md_hmac_sha224 (const uint8_t =« key, uint32_t keylen,
const uint8_t * in, size_t inlen, uint8_t x out, size_t outlen);

Arguments
key
[in] buffer with HMAC key

keylen
[in] length of HMAC key buffer

in

[in] buffer with input data

63

Chapter 3. Programming Interface

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

Description

With this one-shot convenience function, a keyed message digest of the given
buffer is generated. The output buffer must be allocated by the caller and have at
least the length of the message digest size for the chosen keyed message digest.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

kcapi_md_hmac_sha256

LINUX

libkcapi ManualNovember 2022

64

Name

kcapi_md_hmac_sha256 — HMAC SHA-256 keyed message digest on one
buffer

Synopsis

ssize_t kcapi_md_hmac_sha256 (const uint8_t x key, uint32_t keylen,
const uint8_t * in, size_t inlen, uint8_t = out, size_t outlen);

Arguments
key
[in] buffer with HMAC key

keylen

[in] length of HMAC key buffer
in

[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

Description

Chapter 3. Programming Interface

With this one-shot convenience function, a keyed message digest of the given
buffer is generated. The output buffer must be allocated by the caller and have at
least the length of the message digest size for the chosen keyed message digest.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is

filled with the truncated message digest

kcapi_md_hmac_sha384

LINUX

libkcapi ManualNovember 2022

Name

kcapi_md_hmac_sha384 — HMAC SHA-384 keyed message digest on one

buffer

Synopsis

ssize_t kcapi_md_hmac_sha384 (const uint8_t x key, uint32_t keylen,
const uint8_t * in, size_t inlen, uint8_t = out, size_t outlen);

Arguments
key
[in] buffer with HMAC key

keylen

[in] length of HMAC key buffer
in

[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

65

Chapter 3. Programming Interface

Description

With this one-shot convenience function, a keyed message digest of the given
buffer is generated. The output buffer must be allocated by the caller and have at
least the length of the message digest size for the chosen keyed message digest.

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

kcapi_md_hmac_sha512

LINUX
libkcapi ManualNovember 2022

Name

kcapi_md_hmac_sha512 — HMAC SHA-512 keyed message digest on one
buffer

Synopsis

ssize_t kcapi_md_hmac_sha512 (const uint8_t x key, uint32_t keylen,
const uint8_t * in, size_t inlen, uint8_t * out, size_t outlen);

Arguments

key
[in] buffer with HMAC key

keylen
[in] length of HMAC key buffer

in
[in] buffer with input data

inlen

[in] length of input buffer

out

[out] buffer for message digest

outlen

[in] length of out

Description

With this one-shot convenience function, a keyed message digest of the given
buffer is generated. The output buffer must be allocated by the caller and have at
least the length of the message digest size for the chosen keyed message digest.

66

Chapter 3. Programming Interface

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

Message Digest Cipher API - Stream
kcapi_md_update

LINUX
libkcapi ManualNovember 2022

Name

kcapi_md_update — message digest update function (stream)
Synopsis

ssize_t kcapi_md_update (struct kcapi_handle * handle, const
uint8_t * buffer, size_t len);

Arguments
handle
[in] cipher handle

buffer

[in] holding the data to add to the message digest

len

[in] buffer length

Description
The input buffer can be at most INT_MAX in size.

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_md_final

LINUX
libkcapi ManualNovember 2022

Name

kcapi_md_final — message digest finalization function (stream)

67

Chapter 3. Programming Interface

Synopsis

ssize_t kcapi_md_final (struct kcapi_handle % handle, uint8_t =
buffer, size_t 1len);

Arguments

handle

[in] cipher handle

buffer

[out] filled with the message digest

len

[in] buffer length

Description

return size of message digest upon success; -EIO - data cannot be obtained; -
ENOMEM - buffer is too small for the complete message digest, the buffer is
filled with the truncated message digest

Random Number API

kcapi_rng_init

LINUX

libkcapi ManualNovember 2022

68

Name

kcapi_rng_init — initialize cipher handle
Synopsis

int kcapi_rng_init (struct kcapi_handle % handle, const char =
ciphername, uint32_t flags);

Arguments
handle
[out] cipher handle filled during the call

ciphername

[in] kernel crypto API cipher name as specified in /proc/crypto

Chapter 3. Programming Interface
flags

[in] flags specifying the type of cipher handle (unused for RNG)

Description

This function provides the initialization of a random number generator handle
and establishes the connection to the kernel.

On success, a pointer to kcapi_handle object is returned in *handle. Function
kcapi_rng_destroy should be called afterwards to free resources.

return 0 upon success; -ENOENT - algorithm not available; -EOPNOTSUPP -
AF_ALG family not available; -EINVAL - accept syscall failed -ENOMEM - cipher
handle cannot be allocated

kcapi_rng_destroy

LINUX
libkcapi ManualNovember 2022

Name

kcapi_rng_destroy — close the RNG handle and release resources
Synopsis

void kcapi_rng_destroy (struct kcapi_handle x handle);

Arguments

handle

[in] cipher handle to release

kcapi_rng_seed

LINUX
libkcapi ManualNovember 2022

Name
kcapi_rng_seed — seed the RNG

69

Chapter 3. Programming Interface

Synopsis

int kcapi_rng_seed (struct kcapi_handle x handle, uint8_t =« seed,
uint32_t seedlen);

Arguments

handle

[in] cipher handle

seed

[in] seed data

seedlen

[in] size of seed

Description

Note, this call must be called to initialize the selected RNG. When the SPS800-90A
DRBG is used, this call causes the DRBG to seed itself from the internal noise
sources.

Note, in case of using the SP800-90A DRBG, the seed buffer may be NULL. If it is
not NULL, the DRBG uses the given data either as personalization string in case
of the initial seeding or additional data for reseeding.

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_rng_generate

LINUX

libkcapi ManualNovember 2022

70

Name

kcapi_rng_generate — generate a random number
Synopsis

ssize_t kcapi_rng_generate (struct kcapi_handle * handle, uint8_t =
buffer, size_t 1len);

Arguments

handle
[in] cipher handle

Chapter 3. Programming Interface

buffer

[out] filled with the random number

len

[in] buffer length

Description

return size of random number generated upon success; -EIO - data cannot be
obtained

kcapi_rng_seedsize

LINUX
libkcapi ManualNovember 2022

Name

kcapi_rng_seedsize — return required seed size of DRNG
Synopsis

uint32_t kcapi_rng_seedsize (struct kcapi_handle * handle);

Arguments

handle

[in] cipher handle

Description

return > 0 specifying the block size; 0 on error

Random Number API - Convenience
kcapi_rng_get_bytes

LINUX
libkcapi ManualNovember 2022

Name

kcapi_rng_get_bytes — Convenience function to generate random bytes

71

Chapter 3. Programming Interface

Synopsis

ssize_t kcapi_rng_get_bytes (uint8_t = buffer, size_t outlen);

Arguments

buffer

[out] filled with the random number

outlen

[in] buffer length

Description

This convenience function generates random bytes of the size of outlen and stores
them into the provided buffer.

return size of random number generated upon success; -EIO - data cannot be
obtained

Asymmetric Cipher API - Generic

API function calls used to invoke asymmetric ciphers.

kcapi_akcipher_init

LINUX

libkcapi ManualNovember 2022

72

Name

kcapi_akcipher_init — initialize cipher handle
Synopsis

int kcapi_akcipher_init (struct kcapi_handle xx handle, const char =
ciphername, uint32_t flags);

Arguments
handle
[out] cipher handle filled during the call

ciphername

[in] kernel crypto API cipher name as specified in /proc/crypto

Chapter 3. Programming Interface
flags

[in] flags specifying the type of cipher handle

Description

This function provides the initialization of an asymmetric cipher handle and es-
tablishes the connection to the kernel.

On success, a pointer to kcapi_handle object is returned in *handle. Function
kcapi_akcipher_destroy should be called afterwards to free resources.

return 0 upon success; -ENOENT - algorithm not available; -EOPNOTSUPP -
AF_ALG family not available; -EINVAL - accept syscall failed -ENOMEM - cipher
handle cannot be allocated

kcapi_akcipher_destroy

LINUX
libkcapi ManualNovember 2022

Name

kcapi_akcipher_destroy — close the cipher handle and release resources
Synopsis

void kcapi_akcipher_destroy (struct kcapi_handle x handle);

Arguments

handle

[in] cipher handle to release

kcapi_akcipher_setkey

LINUX
libkcapi ManualNovember 2022

Name
kcapi_akcipher_setkey — set the private key for the cipher handle

73

Chapter 3. Programming Interface

Synopsis

int kcapi_akcipher_setkey (struct kcapi_handle *x handle, const
uint8_t x key, uint32_t keylen);

Arguments

handle

[in] cipher handle

key
[in] key buffer in DER format

keylen
[in] length of key buffer

Description
With this function, the caller sets the key for subsequent cipher operations.
The key must be in DER format as follows

SEQUENCE { version INTEGER, n INTEGER ({ rsa_get_n }), e INTEGER ({
rsa_get_e }), d INTEGER ({ rsa_get_d }), primel INTEGER, prime2 INTEGER,
exponentl INTEGER, exponent2 INTEGER, coefficient INTEGER }

After the caller provided the key, the caller may securely destroy the key as it is
now maintained by the kernel.

return upon success the value of the maximum size for the asymmetric oper-
ation is returned (e.g. the modulus size); a negative errno-style error code if an
error occurred

kcapi_akcipher_setpubkey

LINUX

libkcapi ManualNovember 2022

74

Name
kcapi_akcipher_setpubkey — set the public key for the cipher handle

Synopsis

int kcapi_akcipher_setpubkey (struct kcapi_handle % handle, const
uint8_t x key, uint32_t keylen);

Chapter 3. Programming Interface
Arguments

handle

[in] cipher handle

key
[in] key buffer in DER format

keylen
[in] length of key buffer

Description

With this function, the caller sets the key for subsequent cipher operations.
The key must be in DER format as follows

SEQUENCE { n INTEGER ({ rsa_get_n }), e INTEGER ({ rsa_get_e }) }

After the caller provided the key, the caller may securely destroy the key as it is
now maintained by the kernel.

return upon success the value of the maximum size for the asymmetric oper-
ation is returned (e.g. the modulus size); a negative errno-style error code if an
error occurred

Synchronous asymmetric Cipher API - One Shot
kcapi_akcipher_encrypt

LINUX
libkcapi ManualNovember 2022

Name
kcapi_akcipher_encrypt — encrypt data

Synopsis

ssize_t kcapi_akcipher_encrypt (struct kcapi_handle x handle, const
uint8_t * in, size_t inlen, uint8_t =« out, size_t outlen, int
access) ;

Arguments

handle
[in] cipher handle
in

[in] plaintext data buffer

75

Chapter 3. Programming Interface

inlen

[in] length of in buffer

out

[out] ciphertext data buffer

outlen

[in] length of out buffer

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

It is perfectly legal to use the same buffer as the plaintext and ciphertext pointers.
That would mean that after the encryption operation, the plaintext is overwritten
with the ciphertext.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

If the output size is insufficiently large, -EINVAL is returned. The output buffer
must be at least as large as the modululs of the uses key.

return number of bytes returned by the encryption operation upon success; a
negative errno-style error code if an error occurred

kcapi_akcipher_decrypt

LINUX

libkcapi ManualNovember 2022

76

Name
kcapi_akcipher_decrypt — decrypt data

Synopsis

ssize_t kcapi_akcipher_decrypt (struct kcapi_handle x handle, const
uint8_t * in, size_t inlen, uint8_t = out, size_t outlen, int
access) ;

Arguments
handle

[in] cipher handle
in

[in] ciphertext data buffer

Chapter 3. Programming Interface

inlen

[in] length of in buffer

out

[out] plaintext data buffer

outlen

[in] length of out buffer

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

It is perfectly legal to use the same buffer as the plaintext and ciphertext pointers.
That would mean that after the decryption operation, the ciphertext is overwrit-
ten with the plaintext.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

If the output size is insufficiently large, -EINVAL is returned. The output buffer
must be at least as large as the modululs of the uses key.

return number of bytes returned by the decryption operation upon success; a
negative errno-style error code if an error occurred

kcapi_akcipher_sign

LINUX
libkcapi ManualNovember 2022

Name

kcapi_akcipher_sign — signature generation
Synopsis

ssize_t kcapi_akcipher_sign (struct kcapi_handle x handle, const
uint8_t * in, size_t inlen, uint8_t = out, size_t outlen, int
access) ;

Arguments
handle
[in] cipher handle
in
[in] message data buffer

77

Chapter 3. Programming Interface

inlen

[in] length of in buffer

out

[out] signature data buffer

outlen

[in] length of out buffer

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

It is perfectly legal to use the same buffer as the message and signature pointers.
That would mean that after the signature generation operation, the message is
overwritten with the signature.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

If the output size is insufficiently large, -EINVAL is returned. The output buffer
must be at least as large as the modululs of the uses key.

return number of bytes returned by the signature gen operation upon success; a
negative errno-style error code if an error occurred

kcapi_akcipher_verify

LINUX

libkcapi ManualNovember 2022

78

Name

kcapi_akcipher_verify — signature verification
Synopsis

ssize_t kcapi_akcipher_verify (struct kcapi_handle * handle, const
uint8_t * in, size_t inlen, uint8_t = out, size_t outlen, int
access) ;

Arguments
handle

[in] cipher handle
in

[in] message data buffer

Chapter 3. Programming Interface

inlen

[in] length of in buffer

out

[out] signature data buffer

outlen

[in] length of out buffer

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

It is perfectly legal to use the same buffer as the message and signature pointers.
That would mean that after the signature generation operation, the message is
overwritten with the signature.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

If the output size is insufficiently large, -EINVAL is returned. The output buffer
must be at least as large as the modululs of the uses key.

To catch signature verification errors, the return value of this call should be
checked. If this function returns -EBADMSG, the verification of the signature
failed.

return number of bytes returned by the signature ver operation upon success; a
negative errno-style error code if an error occurred

Aynchronous asymmetric Cipher API - One Shot
kcapi_akcipher_encrypt_aio

LINUX
libkcapi ManualNovember 2022

Name

kcapi_akcipher_encrypt_aio— encrypt data (asynchronous one shot)
Synopsis

ssize_t kcapi_akcipher_encrypt_aio (struct kcapi_handle x handle,
struct iovec % iniov, struct iovec % outiov, size_t iovlen, int
access) ;

79

Chapter 3. Programming Interface

Arguments

handle
[in] cipher handle
iniov
[in] head of scatter-gather list array holding the plaintext
outiov
[out] head of scatter-gather list of the destination buffers filled with cipher-
text

iovlen

[in] number of scatter-gather list entries

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The individual scatter-gather list entries are processed with separate invocations
of the the given cipher.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

return number of bytes encrypted upon success; a negative errno-style error
code if an error occurred

kcapi_akcipher_decrypt_aio

LINUX

libkcapi ManualNovember 2022

80

Name

kcapi_akcipher_decrypt_aio — decrypt data (asynchronous one shot)
Synopsis

ssize_t kcapi_akcipher_decrypt_aio (struct kcapi_handle x handle,
struct iovec x iniov, struct iovec * outiov, size_t iovlen, int
access) ;

Arguments

handle
[in] cipher handle

Chapter 3. Programming Interface

iniov
[in] head of scatter-gather list array holding the plaintext

outiov
[out] head of scatter-gather list of the destination buffers filled with cipher-
text

iovlen

[in] number of scatter-gather list entries

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The individual scatter-gather list entries are processed with separate invocations
of the the given cipher.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

return number of bytes decrypted upon success; a negative errno-style error
code if an error occurred

kcapi_akcipher_sign_aio

LINUX
libkcapi ManualNovember 2022

Name

kcapi_akcipher_sign_aio — sign data (asynchronous one shot)
Synopsis

ssize_t kcapi_akcipher_sign_aio (struct kcapi_handle * handle,
struct iovec x iniov, struct iovec * outiov, size_t iovlen, int
access) ;

Arguments

handle
[in] cipher handle
iniov

[in] head of scatter-gather list array holding the plaintext

81

Chapter 3. Programming Interface

outiov
[out] head of scatter-gather list of the destination buffers filled with cipher-
text

iovlen

[in] number of scatter-gather list entries

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The individual scatter-gather list entries are processed with separate invocations
of the the given cipher.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

returnnumber of bytes signed upon success; a negative errno-style error code if
an error occurred

kcapi_akcipher_verify_aio

LINUX

libkcapi ManualNovember 2022

82

Name

kcapi_akcipher_verify_aio — verify data (asynchronous one shot)
Synopsis

ssize_t kcapi_akcipher_verify_aio (struct kcapi_handle % handle,
struct iovec x iniov, struct iovec * outiov, size_t iovlen, int
access) ;

Arguments

handle
[in] cipher handle
iniov
[in] head of scatter-gather list array holding the plaintext

outiov

[out] head of scatter-gather list of the destination buffers filled with cipher-
text

Chapter 3. Programming Interface

iovlen

[in] number of scatter-gather list entries

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The individual scatter-gather list entries are processed with separate invocations
of the the given cipher.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

return number of bytes verify upon success; a negative errno-style error code if
an error occurred

Asymmetric Cipher API - Stream
kcapi_akcipher_stream_init_enc

LINUX
libkcapi ManualNovember 2022

Name

kcapi_akcipher_stream_init_enc — start an encryption operation
(stream)

Synopsis

ssize_t kcapi_akcipher_stream_init_enc (struct kcapi_handle x handle,
struct iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle

iov
[in] scatter/gather list with data to be encrypted. This is the pointer to the
first iov entry if an array of iov entries is supplied. See sendmsg(2) for de-

tails on how iov is to be used. This pointer may be NULL if no data to be
encrypted is available at the point of the call.

83

Chapter 3. Programming Interface

iovlen

[in] number of scatter/gather list elements. If iov is NULL, this value must
be zero.

Description

A stream encryption operation is started with this call. Multiple successive
kcapi_akcipher_stream_update function calls can be invoked to send more
plaintext data to be encrypted. The last invocation to supply data must be done
wdﬂ1kcapi_akcipher_stream_update_last.The]«Hnelbuﬁbrstheinputunﬁl
kcapi_akcipher_stream_op picks up the encrypted data. Once plaintext is
encrypted during the kcapi_cipher_stream_op it is removed from the kernel
buffer.

The function calls of kcapi_akcipher_stream_update and
kcapi_akcipher_stream_op can be mixed, even by multiple threads of an
application.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_akcipher_stream_init_dec

LINUX

libkcapi ManualNovember 2022

84

Name

kcapi_akcipher_stream_init_dec — start an decryption operation
(stream)

Synopsis

ssize_t kcapi_akcipher_stream_init_dec (struct kcapi_handle * handle,
struct iovec x iov, size_t iovlen);

Arguments

handle
[in] cipher handle

iov
[in] scatter/gather list with data to be decrypted. This is the pointer to the
first iov entry if an array of iov entries is supplied. See sendmsg(2) for de-
tails on how iov is to be used. This pointer may be NULL if no data to be
decrypted is available at the point of the call.

iovlen

[in] number of scatter/gather list elements. If iov is NULL, this value must
be zero.

Chapter 3. Programming Interface

Description

A stream decryption operation is started with this call. Multiple successive
kcapi_akcipher_stream_update function calls can be invoked to send more
plaintext data to be decrypted. The last invocation to supply data must be done
mdﬂ1kcapi_akcipher_stream_update_last.The]«ﬂnelbuﬂbrstheinputunﬁl
kcapi_akcipher_stream_op picks up the encrypted data. Once plaintext is
decrypted during the kcapi_cipher_stream_op it is removed from the kernel

buffer.

The function calls of kcapi_akcipher_stream_update and
kcapi_akcipher_ stream_op can be mixed, even by multiple threads of an
application.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_akcipher_stream_init_sgn

LINUX
libkcapi ManualNovember 2022

Name

kcapi_akcipher_stream_init_sgn — start an signing operation (stream)
Synopsis

ssize_t kcapi_akcipher_stream_init_sgn (struct kcapi_handle x handle,
struct iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle

iov
[in] scatter/gather list with data to be signed. This is the pointer to the first
iov entry if an array of iov entries is supplied. See sendmsg(2) for details on
how iov is to be used. This pointer may be NULL if no data to be signed is
available at the point of the call.

iovlen

[in] number of scatter/gather list elements. If iov is NULL, this value must
be zero.

Description

A stream signing operation is started with this call. Multiple successive
kcapi_akcipher_stream_update function calls can be invoked to send more
plaintext data to be signed. The last invocation to supply data must be done
Mﬁﬂlkcapi_akcipher_stream_update_last.Thekernelbuﬁhrstheinputunﬁl

85

Chapter 3. Programming Interface

kcapi_akcipher_stream_op picks up the signed data. Once plaintext is signed
during the kcapi_cipher_stream_op it is removed from the kernel buffer.

The function calls of kcapi_akcipher_stream_update and
kcapi_akcipher_ stream_op can be mixed, even by multiple threads of an
application.

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_akcipher_stream_init_vfy

LINUX

libkcapi ManualNovember 2022

86

Name

kcapi_akcipher_stream_init_vfy — start an signature verification
operation (stream)

Synopsis

ssize_t kcapi_akcipher_stream_init_vfy (struct kcapi_handle * handle,
struct iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle

iov
[in] scatter/gather list with data to be verified. This is the pointer to the first
iov entry if an array of iov entries is supplied. See sendmsg(2) for details on

how iov is to be used. This pointer may be NULL if no data to be verified is
available at the point of the call.

iovlen

[in] number of scatter/gather list elements. If iov is NULL, this value must
be zero.

Description

A stream signature verification operation is started with this call. Multiple suc-
cessive kcapi_akcipher_stream_update function calls can be invoked to send
more plaintext data to be verified. The last invocation to supply data must be
done with kcapi_akcipher_stream_update_last. The kernel buffers the in-
put until kcapi_akcipher_stream op picks up the verified data. Once plaintext
is verified during the kcapi_cipher_stream_op it is removed from the kernel
buffer.

The function calls of kcapi_akcipher_stream_update and
kcapi_akcipher_stream_op can be mixed, even by multiple threads of an
application.

Chapter 3. Programming Interface

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_akcipher_stream_update

LINUX
libkcapi ManualNovember 2022

Name

kcapi_akcipher_stream update — send more data for processing (stream)
Synopsis

ssize_t kcapi_akcipher_stream_update (struct kcapi_handle % handle,
struct iovec * iov, size_t iovlen);

Arguments

handle
[in] cipher handle
iov
[in] scatter/gather list with data to be processed by the cipher operation.

iovlen

[in] number of scatter/gather list elements.

Description
Using this function call, more data can be submitted to the kernel.

This function may cause the caller to sleep if the kernel buffer holding the data
is getting full. The process will be woken up once more buffer space becomes
available by calling kcapi_akcipher_stream_op.

Note

with the separate API calls of kcapi_akcipher_stream_update and
kcapi_akcipher_stream op a multi-threaded application can be implemented
where one thread sends data to be processed and one thread picks up data
processed by the cipher operation.

WARNING

The memory referenced by iov is not accessed by the kernel during this call.
The memory is first accessed when kcapi_cipher_stream op is called. Thus,
you MUST make sure that the referenced memory is still present at the time
kcapi_cipher_stream_opiscaﬂed.

87

Chapter 3. Programming Interface

return number of bytes sent to the kernel upon success; a negative errno-style
error code if an error occurred

kcapi_akcipher_stream_op

LINUX

libkcapi ManualNovember 2022

88

Name

kcapi_akcipher_stream op — obtain processed data (stream)
Synopsis

ssize_t kcapi_akcipher_stream_op (struct kcapi_handle x handle,
struct iovec x iov, size_t iovlen);

Arguments

handle
[in] cipher handle

iov
[in/out] scatter/gather list pointing to buffers to be filled with the resulting
data from a cipher operation.

iovlen

[in] number of scatter/gather list elements.

Description

This call can be called interleaved with kcapi_akcipher_stream_update to fetch
the processed data.

This function may cause the caller to sleep if the kernel buffer holding the data
is empty. The process will be woken up once more data is sent by calling
kcapi_cipher_stream_update.

Note, when supplying buffers that are not multiple of block size, the buffers will
only be filled up to the maximum number of full block sizes that fit into the buffer.

returnnumber of bytes obtained from the kernel upon success; a negative errno-
style error code if an error occurred

Chapter 3. Programming Interface

Key Protocol Primitives API - Generic
kcapi_kpp_init

LINUX
libkcapi ManualNovember 2022

Name

kcapi_kpp_init — initialize cipher handle
Synopsis

int kcapi_kpp_init (struct kcapi_handle xx handle, const char =
ciphername, uint32_t flags);

Arguments

handle
[out] cipher handle filled during the call

ciphername

[in] kernel crypto API cipher name as specified in /proc/crypto

flags
[in] flags specifying the type of cipher handle

Description

This function provides the initialization of a KPP cipher handle and establishes
the connection to the kernel.

On success, a pointer to kcapi_handle object is returned in *handle. Function
kcapi_kpp_destroy should be called afterwards to free resources.

return 0 upon success; -ENOENT - algorithm not available; -EOPNOTSUPP -
AF_ALG family not available; -EINVAL - accept syscall failed -ENOMEM - cipher
handle cannot be allocated

kcapi_kpp_destroy

LINUX
libkcapi ManualNovember 2022

Name

kcapi_kpp_destroy — close the cipher handle and release resources

89

Chapter 3. Programming Interface

Synopsis

void kcapi_kpp_destroy (struct kcapi_handle x handle);

Arguments

handle

[in] cipher handle to release

kcapi_kpp_dh_setparam_pkcs3

LINUX

libkcapi ManualNovember 2022

90

Name

kcapi_kpp_dh_setparam_pkcs3 — set the PG parameters using PKCS3
format

Synopsis

int kcapi_kpp_dh_setparam_pkcs3 (struct kcapi_handle x handle, const
uint8_t x pkecs3, uint32_t pkcs3len);

Arguments

handle

[in] cipher handle

pkcs3
[in] parameter buffer in DER format

pkcs3len
[in] length of key buffer

Description

With this function, the caller sets the PG parameters for subsequent cipher oper-
ations.

The parameter set must be in DER format as follows
SEQUENCE { prime INTEGER ({ dh_get_p }), base INTEGER ({ dh_get_g }) }

The following command generates such parameter set where the output

Chapter 3. Programming Interface

file content is has the correct DER structure

openssl dhparam -outform DER -out dhparam.der 2048

Note, this function defines that the subsequent key generation and shared secret
operation performs an FFC Diffie-Hellman operation.

After the caller provided the key, the caller may destroy the parameter as it is
now maintained by the kernel.

return upon success the value of the maximum size for the KPP operation is re-
turned (e.g. the prime size); a negative errno-style error code if an error occurred

kcapi_kpp_ecdh_setcurve

LINUX
libkcapi ManualNovember 2022

Name
kcapi_kpp_ecdh_setcurve — set the ECC curve to be used for ECDH

Synopsis

int kcapi_kpp_ecdh_setcurve (struct kcapi_handle % handle, unsigned
long curve_id);

Arguments

handle

[in] cipher handle

curve_1id

[in] ID of the ECC curve

Description

With this function, the caller sets the ECC curve for subsequent cipher operations.
The curve ID is one of the ECC_CURVE_* identifiers.

Note, this function defines that the subsequent key generation and shared secret
operation performs an ECC Diffie-Hellman operation.

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_kpp_setkey

LINUX

91

Chapter 3. Programming Interface

libkcapi ManualNovember 2022

Name
kcapi_kpp_setkey — set the private key of the DH / ECDH operation

Synopsis

int kcapi_kpp_setkey (struct kcapi_handle % handle, const uint8_t =
key, uint32_t keylen);

Arguments

handle

[in] cipher handle

key
[in] key buffer

keylen
[in] length of key buffer

Description

With this function, the caller sets the key for subsequent DH / ECDH public key
generation or shared secret generation operations.

If the key / keylen is zero, the kernel tries to generate the private key itself and
retains it internally. This is useful if the DH / ECDH operation shall be performed
on ephemeral keys where the caller is only interested in eventually obtain the
shared secret.

After the caller provided the key, the caller may securely destroy the key as it is
now maintained by the kernel.

Note, the key can only be set after the DH parameters or the ECC curve has been
set.

returnin case of success a positive integer is returned that denominates the max-
imum output size of the cryptographic operation -- this value must be used as the
size of the output buffer for one cryptographic operation); a negative errno-style
error code if an error occurred -- the error -EOPNOTSUPP is returned in case a
kernel-triggered private key generation is requested, but the underlying cipher
implementation does not support this operation.

Synchronous Key Protocol Primitives API - One Shot

kcapi_kpp_keygen

92

LINUX

Chapter 3. Programming Interface
libkcapi ManualNovember 2022

Name
kcapi_kpp_keygen — generate a public key

Synopsis

ssize_t kcapi_kpp_keygen (struct kcapi_handle * handle, uint8_t =
pubkey, size_t pubkeylen, int access);

Arguments

handle

[in] cipher handle

pubkey
[out] generated public key

pubkeylen
[in] length of key buffer

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

return number of bytes returned by the key generation operation upon success;
a negative errno-style error code if an error occurred

kcapi_kpp_ssgen

LINUX
libkcapi ManualNovember 2022

Name

kcapi_kpp_ssgen — generate a shared secret
Synopsis

ssize_t kcapi_kpp_ssgen (struct kcapi_handle * handle, const
uint8_t * pubkey, size_t pubkeylen, uint8_t +* ss, size_t sslen, int
access) ;

93

Chapter 3. Programming Interface

Arguments

handle

[in] cipher handle

pubkey
[in] public key of peer that shall be used to generate the shared secret with

pubkeylen
[in] length of the public key buffer

SS

[out] generated shared secret

sslen

[in] length of key buffer

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

returnnumber of bytes returned by the shared secret generation operation upon
success; a negative errno-style error code if an error occurred

Asynchronous Key Protocol Primitives API - One Shot

kcapi_kpp_keygen_aio

LINUX

libkcapi ManualNovember 2022

94

Name

kcapi_kpp_keygen_aio — generate a public key (asynchronous one shot)
Synopsis

ssize_t kcapi_kpp_keygen_aio (struct kcapi_handle % handle, struct
iovec * outiov, size_t iovlen, int access);

Arguments

handle

[in] cipher handle

Chapter 3. Programming Interface

outiov
[out] head of scatter-gather list of the destination buffers filled with the gen-
erated public key

iovlen

[in] number of scatter-gather list entries

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The individual scatter-gather list entries are processed with separate invocations
of the the given cipher.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

return number of bytes verify upon success; a negative errno-style error code if
an error occurred

kcapi_kpp_ssgen_aio

LINUX
libkcapi ManualNovember 2022

Name

kcapi_kpp_ssgen_aio — generate a shared secret (asynchronous one shot)
Synopsis

ssize_t kcapi_kpp_ssgen_aio (struct kcapi_handle x handle, struct
iovec * iniov, struct iovec * outiov, size_t iovlen, int access);

Arguments

handle
[in] cipher handle

iniov
[in] head of scatter-gather list of the source buffers with the public keys of
the peer

outiov

[out] head of scatter-gather list of the destination buffers filled with the gen-
erated shared secret

95

Chapter 3. Programming Interface

iovlen

[in] number of scatter-gather list entries

access

[in] kernel access type (KCAPI_ACCESS_HEURISTIC - use internal heuristic
for fastest kernel access; KCAPI_ACCESS_VMSPLICE - use vmsplice access;
KCAPI_ACCESS_SENDMSG - sendmsg access)

Description

The individual scatter-gather list entries are processed with separate invocations
of the the given cipher.

The memory should be aligned at the page boundary using
posix_memalign(sysconf(_SC_PAGESIZE)), If it is not aligned at the page
boundary, the vmsplice call may not send all data to the kernel.

return number of bytes verify upon success; a negative errno-style error code if
an error occurred

Key Derivation Functions

API function calls used to invoke a KDF. The KDF functions are based on a mes-
sage digest or keyed message digest function. The caller must have the handle
allocated with kcapi_md_init. If the caller wishes to use a keyed message digest,
the caller must invoke kcapi_md_setkey before those functions.

kcapi_kdf_dpi

LINUX

libkcapi ManualNovember 2022

96

Name
kcapi_kdf_dpi — Double Pipeline Mode Key Derivation Function

Synopsis

ssize_t kcapi_kdf_dpi (struct kcapi_handle % handle, const uint8_t
* src, Size_t slen, uint8_t = dst, size_t dlen);

Arguments

handle

[in] cipher handle allocated by caller. This cipher handle must be allocated
with kcapi_md_init. If the caller is interested in a KDF using a keyed mes-
sage digest, the caller should also call kcapi_md_setkey before invoking this
function.

src

[in] Input data that should be transformed into a key (see below).

Chapter 3. Programming Interface

slen

[in] Length of the src input data.

dst
[out] Buffer to store the generated key in,

dlen

[in] Length of the dst buffer. This value defines the number of bytes gener-
ated by the KDF.

Description

This function is an implementation of the KDF in double pipeline iteration mode
according with counter to SP800-108 section 5.3.

The caller must provide Label | | 0x00 | | Context in src. This src pointer may
also be NULL if the caller wishes not to provide anything.

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_kdf _fb

LINUX
libkcapi ManualNovember 2022

Name
kcapi_kdf_fb — Feedback Mode Key Derivation Function

Synopsis

ssize_t kcapi_kdf_fb (struct kcapi_handle x handle, const uint8_t =
src, size_t slen, uint8_t =* dst, size_t dlen);

Arguments

handle

[in] cipher handle allocated by caller. This cipher handle must be allocated
with kcapi_md_init. If the caller is interested in a KDF using a keyed mes-
sage digest, the caller should also call kcapi_md_setkey before invoking this
function.

src

[in] Input data that should be transformed into a key (see below).

slen

[in] Length of the src input data.

dst
[out] Buffer to store the generated key in,

97

Chapter 3. Programming Interface

dlen

[in] Length of the dst buffer. This value defines the number of bytes gener-
ated by the KDE.

Description

This function is an implementation of the KDF in feedback mode with a non-
NULL IV and with counter according to SP800-108 section 5.2. The IV is supplied
with src and must be equal to the digestsize of the used cipher.

In addition, the caller must provide Label | | 0x00 | | Context in src. This src
pointer must not be NULL as the IV is required. The ultimate format of the src
pointer is IV | | Label | | 0x00 | | Context where the length of the IV is equal to
the block size (i.e. the digest size of the underlying hash) of the PRF.

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_kdf_ctr

LINUX

libkcapi ManualNovember 2022

98

Name

kcapi_kdf_ctr — Counter Mode Key Derivation Function
Synopsis

ssize_t kcapi_kdf_ctr (struct kcapi_handle % handle, const uint8_t
* src, Size_t slen, uint8_t = dst, size_t dlen);

Arguments

handle

[in] cipher handle allocated by caller. This cipher handle must be allocated
with kcapi_md_init. If the caller is interested in a KDF using a keyed mes-
sage digest, the caller should also call kcapi_md_setkey before invoking this
function.

src

[in] Input data that should be transformed into a key (see below).

slen

[in] Length of the src input data.

dst

[out] Buffer to store the generated key in,

Chapter 3. Programming Interface

dlen

[in] Length of the dst buffer. This value defines the number of bytes gener-
ated by the KDE.

Description

This function is an implementation of the KDF in counter mode according to
SP800-108 section 5.1 as well as SP800-56A section 5.8.1 (Single-step KDF).

SP800-108: The caller must provide Label || 0x00 | | Context in src. This src
pointer may also be NULL if the caller wishes not to provide anything.

SP800-56A: If a keyed MAC is used, the key shall NOT be the shared secret from
the DH operation, but an independently generated key. The src pointer is defined
as Z | | other info where Z is the shared secret from DH and other info is an
arbitrary string (see SP800-56A section 5.8.1.2).

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_pbkdf

LINUX
libkcapi ManualNovember 2022

Name

kcapi_pbkdf — Password-based Key Derivation Function
Synopsis

ssize_t kcapi_pbkdf (const char % hashname, const uint8_t * pw,
uint32_t pwlen, const uint8_t x salt, size_t saltlen, uint32_t
count, uint8_t = key, size_t keylen);

Arguments

hashname

[in] kernel crypto API name of a keyed hash (e.g. hmac(shal))

[in] Password a key shall be derived from

pwlen
[in] Length of password string

salt
[in] Salt as defined in SP800-132

saltlen

[in] Length of salt buffer

99

Chapter 3. Programming Interface

count

[in] Numbers of iterations to be performed for the PBKDF

key
[out] Buffer to store the generated key in

keylen
[in] Size of the key to be generated (i.e. length of the key buffer)

Description
This function is an implementation of the PBKDF as defined in SP800-132.

return 0 upon success; a negative errno-style error code if an error occurred

kcapi_pbkdf_iteration_count

LINUX

libkcapi ManualNovember 2022

100

Name

kcapi_pbkdf_iteration_count — Calculate numbers of iterations for a
PBKDF

Synopsis

uint32_t kcapi_pbkdf_iteration_count (const char x hashname, uint64_t
timeshresh) ;

Arguments

hashname

[in] kernel crypto API name of a keyed hash (e.g. hmac(shal))

timeshresh

[in] Time duration in nanoseconds that the PBKDF operation shall at least
require. If that value is 0, a default of (1<<27) nanoseconds is used.

Description

The function measures the time the PBKDF operation takes for different round
counts for the given keyed message digest type.

The result should be taken as the iteration count for a PBKDF operation.
If an error occurs with the PBKDF calculation, a value of 1<<18 is returned.

return number of iterations a PBKDF should take on this computer.

Chapter 3. Programming Interface

kcapi_hkdf

LINUX
libkcapi ManualNovember 2022

Name
kcapi_hkdf — Extract-and-Expand HKDF (RFC5869)

Synopsis

ssize_t kcapi_hkdf (const char x hashname, const uint8_t =* ikm,
size_t ikmlen, const uint8_t * salt, uint32_t saltlen, const
uint8_t % info, size_t infolen, uint8_t =« dst, size_t dlen);

Arguments

hashname

[in] kernel crypto API name of a keyed hash (e.g. hmac(shal))
ikm

[in] Input Keying Material (IKM) -- must be provided
ikmlen

[in] IKM buffer length -- must be non-zero

salt
[in] salt buffer -- may be NULL

saltlen

[in] salt buffer length -- may be zero
info
[in] info buffer -- may be NULL

infolen

[in] info buffer length -- may be zero

dst

[out] Buffer to store the generated key in,

dlen

[in] Length of the dst buffer. This value defines the number of bytes gener-
ated by the KDE.

Description

Perform the key-derivation function according to RFC5869. The input data is de-
fined in sections 2.2 und 2.3 of RFC5869.

return 0 upon success; a negative errno-style error code if an error occurred

101

Chapter 3. Programming Interface

102

	Linux Kernel Crypto API User Space Interface Library
	Table of Contents
	Chapter 1. libkcapi Linux Kernel Crypto API User Space Interface Library
	Version Number Schema
	Purpose Of AFALG

	Chapter 2. Programming Guidelines
	Convenience Functions
	Synchronous Symmetric Cipher API
	Asynchronous Symmetric Cipher API
	AEAD Cipher API
	Aynchronous AEAD Cipher API
	AEAD Memory Structure

	Message Digest API
	Asymmetric Cipher API
	Zero Copy
	Memory Allocation
	Asynchronous I/O Use Cases and Libkcapi
	Multiple Staged Cipher Operations
	Multiple Separate Cipher Operations

	Kernel Interfaces
	Kernel Configuration

	Example Code

	Chapter 3. Programming Interface
	Common API
	kcapisetverbosity
	LINUX
	Name
	Synopsis
	Arguments
	LOGERR
	LOGWARN
	LOGVERBOSE
	LOGDEBUG

	kcapiversionstring
	LINUX
	Name
	Synopsis
	Arguments

	kcapiversion
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapipadiv
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimemsetsecure
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapihandlereinit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapisetmaxsplicesize
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	kcapigetmaxsplicesize
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Symmetric Cipher API Generic
	kcapicipherinit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherdestroy
	LINUX
	Name
	Synopsis
	Arguments

	kcapiciphersetkey
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherivsize
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherblocksize
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Synchronous Symmetric Cipher API One Shot
	kcapicipherencrypt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherdecrypt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Symmetric Cipher API Convenience
	kcapicipherencaescbc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherdecaescbc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherencaesctr
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherdecaesctr
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Asynchronous Symmetric Cipher API One Shot
	kcapicipherencryptaio
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherdecryptaio
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Synchronous Symmetric Cipher API Stream
	kcapicipherstreaminitenc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherstreaminitdec
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapicipherstreamupdate
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note
	IMPORTANT NOTE
	WARNING

	kcapicipherstreamupdatelast
	LINUX
	Name
	Synopsis
	Arguments
	Description
	WARNING

	kcapicipherstreamop
	LINUX
	Name
	Synopsis
	Arguments
	Description

	AEAD Cipher API Generic
	kcapiaeadinit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeaddestroy
	LINUX
	Name
	Synopsis
	Arguments

	kcapiaeadsetkey
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadsetassoclen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadsettaglen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadivsize
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadblocksize
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadauthsize
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadinbuflenenc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadinbuflendec
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadoutbuflenenc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadoutbuflendec
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadccmnoncetoiv
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadgetdatainput
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadgetdataoutput
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Synchronous AEAD Cipher API One Shot
	kcapiaeadencrypt
	LINUX
	Name
	Synopsis
	Arguments
	Description
	IMPORTANT NOTE

	kcapiaeaddecrypt
	LINUX
	Name
	Synopsis
	Arguments
	Description
	IMPORTANT NOTE

	Aynchronous AEAD Cipher API One Shot
	kcapiaeadencryptaio
	LINUX
	Name
	Synopsis
	Arguments
	Description
	IMPORTANT NOTE

	kcapiaeaddecryptaio
	LINUX
	Name
	Synopsis
	Arguments
	Description
	IMPORTANT NOTE

	Synchronous AEAD Cipher API Stream
	kcapiaeadstreaminitenc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadstreaminitdec
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiaeadstreamupdate
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note
	WARNING

	kcapiaeadstreamupdatelast
	LINUX
	Name
	Synopsis
	Arguments
	Description
	WARNING

	kcapiaeadstreamop
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Message Digest Cipher API Generic
	kcapimdinit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimddestroy
	LINUX
	Name
	Synopsis
	Arguments

	kcapimdsetkey
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimddigestsize
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Message Digest Cipher API One Shot
	kcapimddigest
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Message Digest Cipher API Convenience
	kcapimdsha1
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdsha224
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdsha256
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdsha384
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdsha512
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdhmacsha1
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdhmacsha224
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdhmacsha256
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdhmacsha384
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdhmacsha512
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Message Digest Cipher API Stream
	kcapimdupdate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapimdfinal
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Random Number API
	kcapirnginit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapirngdestroy
	LINUX
	Name
	Synopsis
	Arguments

	kcapirngseed
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapirnggenerate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapirngseedsize
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Random Number API Convenience
	kcapirnggetbytes
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Asymmetric Cipher API Generic
	kcapiakcipherinit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakcipherdestroy
	LINUX
	Name
	Synopsis
	Arguments

	kcapiakciphersetkey
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakciphersetpubkey
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Synchronous asymmetric Cipher API One Shot
	kcapiakcipherencrypt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakcipherdecrypt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakciphersign
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakcipherverify
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Aynchronous asymmetric Cipher API One Shot
	kcapiakcipherencryptaio
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakcipherdecryptaio
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakciphersignaio
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakcipherverifyaio
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Asymmetric Cipher API Stream
	kcapiakcipherstreaminitenc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakcipherstreaminitdec
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakcipherstreaminitsgn
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakcipherstreaminitvfy
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapiakcipherstreamupdate
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note
	WARNING

	kcapiakcipherstreamop
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Key Protocol Primitives API Generic
	kcapikppinit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapikppdestroy
	LINUX
	Name
	Synopsis
	Arguments

	kcapikppdhsetparampkcs3
	LINUX
	Name
	Synopsis
	Arguments
	Description
	file content is has the correct DER structure

	kcapikppecdhsetcurve
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapikppsetkey
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Synchronous Key Protocol Primitives API One Shot
	kcapikppkeygen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapikppssgen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Asynchronous Key Protocol Primitives API One Shot
	kcapikppkeygenaio
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapikppssgenaio
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Key Derivation Functions
	kcapikdfdpi
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapikdffb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapikdfctr
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapipbkdf
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapipbkdfiterationcount
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kcapihkdf
	LINUX
	Name
	Synopsis
	Arguments
	Description

